Suppr超能文献

机器学习辅助评估中国海南金矿地区重金属风险。

Machine learning-assisted risk evaluation of heavy metals in the Hainan gold mining region, China.

机构信息

Hainan Pujin Environmental Technology Co., Ltd, Haikou, 570200, Hainan Province, China.

Haikou Engineering Technology Research Center of Soild Waste Treatment & Disposal and Soil Remediation, Haikou, 570200, Hainan Province, China.

出版信息

Environ Monit Assess. 2024 Oct 8;196(11):1031. doi: 10.1007/s10661-024-13205-w.

Abstract

This study employed machine learning (ML) to thoroughly investigate the impact of informal mining activities on the distribution and pollution status of heavy metals in soils near private gold mines in Hainan Province, southern China, a region known for its ecological sensitivity and economic importance. By systematically collecting surface soil samples and samples at depths of 0.5-1 m from 175 drilling sites, a comprehensive quantitative analysis was conducted on major heavy metal elements, including lead (Pb), copper (Cu), cadmium (Cd), nickel (Ni), mercury (Hg), chromium (Cr), arsenic (As), and zinc (Zn). Combined with evaluation methods such as the Pollution Load Index (PLI), Normalized Pollution Index (NIPI), and Ecological Risk Index (ERI), the study revealed a high level of soil pollution at informal mining sites. The findings indicated that the average concentrations of Pb, Cd, Hg, As, and Zn in surface soils significantly exceeded the background values for soils in China, with a pronounced positive correlation observed between these heavy metal elements in both surface and deep soil profiles (r > 0.5). Furthermore, leveraging the heavy metal content in surface soils and the constructed environmental indicators, the predictive accuracy for metal content in deep soils was found to range from R = 0.27 to 0.68, suggesting that informal mining activities have led to substantial variations in metal content across different soil profiles. Through the application of a random forest model for predictive analysis of the PLI, NIPI, and ERI, high prediction accuracy was achieved (R = 0.78, 0.86, and 0.60, respectively). The study demonstrates that informal mining activities not only elevate the risk of soil pollution but also alter the distribution patterns of heavy metals. Also, this study provides a crucial foundation for the scientific assessment of soil quality and potential environmental hazards, while also affirming the efficacy of ML techniques in forecasting soil quality parameters.

摘要

本研究采用机器学习(ML)方法,深入研究了中国南部海南省私人金矿附近土壤中重金属的分布和污染状况,这些地区生态敏感,经济重要。通过系统采集 175 个钻孔点的表层土壤和 0.5-1 米深处的土壤样本,对主要重金属元素(包括铅(Pb)、铜(Cu)、镉(Cd)、镍(Ni)、汞(Hg)、铬(Cr)、砷(As)和锌(Zn))进行了全面定量分析。结合污染负荷指数(PLI)、归一化污染指数(NIPI)和生态风险指数(ERI)等评价方法,研究揭示了非正式采矿活动对土壤污染的高度影响。研究结果表明,表层土壤中 Pb、Cd、Hg、As 和 Zn 的平均浓度明显超过中国土壤背景值,且这些重金属元素在表层和深层土壤剖面中均呈显著正相关(r>0.5)。此外,利用表层土壤重金属含量和构建的环境指标,深层土壤金属含量的预测精度范围为 R=0.27 至 0.68,表明非正式采矿活动导致不同土壤剖面的金属含量发生了显著变化。通过随机森林模型对 PLI、NIPI 和 ERI 的预测分析,实现了较高的预测精度(R=0.78、0.86 和 0.60)。本研究表明,非正式采矿活动不仅增加了土壤污染风险,还改变了重金属的分布模式。此外,本研究为科学评估土壤质量和潜在环境危害提供了重要基础,同时也肯定了 ML 技术在预测土壤质量参数方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验