Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Zuckerman Mind Brain Behavior Institute, Columbia University Medical Center, New York, NY 10027.
Department of Systems Neurophysiology, Institute for Zoology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen 52074, Germany.
Proc Natl Acad Sci U S A. 2024 Oct 15;121(42):e2319246121. doi: 10.1073/pnas.2319246121. Epub 2024 Oct 8.
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels generate the cationic I current in neurons and regulate the excitability of neuronal networks. The function of HCN channels depends, in part, on their subcellular localization. Of the four HCN isoforms (HCN1-4), HCN1 is strongly expressed in the dendrites of pyramidal neurons (PNs) in hippocampal area CA1 but also in presynaptic terminals of parvalbumin-positive interneurons (PV+ INs), which provide strong inhibitory control over hippocampal activity. Yet, little is known about how HCN1 channels in these cells regulate the evoked release of the inhibitory transmitter GABA from their axon terminals. Here, we used genetic, optogenetic, electrophysiological, and imaging techniques to investigate how the electrophysiological properties of PV+ INs are regulated by HCN1, including how HCN1 activity at presynaptic terminals regulates the release of GABA onto PNs in CA1. We found that application of HCN1 pharmacological blockers reduced the amplitude of the inhibitory postsynaptic potential recorded from CA1 PNs in response to selective optogenetic stimulation of PV+ INs. Homozygous HCN1 knockout mice also show reduced IPSCs in postsynaptic cells. Finally, two-photon imaging using genetically encoded fluorescent calcium indicators revealed that HCN1 blockers reduced the probability that an extracellular electrical stimulating pulse evoked a Ca response in individual PV+ IN presynaptic boutons. Taken together, our results show that HCN1 channels in the axon terminals of PV+ interneurons facilitate GABAergic transmission in the hippocampal CA1 region.
超极化激活的环核苷酸门控 (HCN) 通道在神经元中产生阳离子电流,并调节神经元网络的兴奋性。HCN 通道的功能部分取决于其亚细胞定位。在四种 HCN 同工型(HCN1-4)中,HCN1 在海马 CA1 区的锥体神经元(PNs)的树突中强烈表达,但也在表达 parvalbumin 的中间神经元(PV+INs)的突触前末端表达,这些神经元对海马体活动提供强烈的抑制控制。然而,对于 HCN1 通道如何调节其轴突末端抑制性递质 GABA 的诱发释放,人们知之甚少。在这里,我们使用遗传、光遗传学、电生理学和成像技术来研究 HCN1 如何调节 PV+INs 的电生理特性,包括 HCN1 在突触前末端的活性如何调节 GABA 对 CA1 中 PNs 的释放。我们发现,应用 HCN1 药理学阻断剂可降低对 PV+IN 进行选择性光遗传学刺激时从 CA1 PNs 记录的抑制性突触后电位的幅度。HCN1 纯合敲除小鼠在突触后细胞中也显示 IPSC 减少。最后,使用遗传编码的荧光钙指示剂的双光子成像显示,HCN1 阻断剂降低了单个 PV+IN 突触前末梢的细胞外电刺激脉冲诱发 Ca 反应的概率。总之,我们的结果表明,PV+中间神经元轴突末端的 HCN1 通道促进了海马 CA1 区的 GABA 能传递。