Tian Guangtai, Tan Jin, Li Bin, Duan Guangren
IEEE Trans Cybern. 2024 Dec;54(12):7469-7478. doi: 10.1109/TCYB.2024.3467386. Epub 2024 Nov 27.
In this article, a trajectory tracking control strategy is proposed for robot manipulators via a fully actuated system (FAS) approach, which has shown its simplicity and flexibility for most of the nonlinear controller design. However, the motion control for robot manipulators is more complicated since unknown dynamical model, external disturbances, friction forces, and various physical constraints are required to be considered. Therefore, the FAS approach cannot be straightforwardly applied. To address these challenges, the dynamic model of robot manipulators is established via model identification methods. Furthermore, based on the identified model, an FAS composite control strategy with simple structure is designed, which is achieved by integrating a high-order disturbance observer (HODO) in the inner loop, with an FAS trajectory tracking controller in the outer loop. Specifically, the HODO is utilized for handling the uncertain dynamics and external disturbances. Moreover, the controller gains are optimized using a gradient-based optimal parameter tuning method (OPTM). By imposing joint angle constraints, joint angular velocity constraints, and input torque limits into the formulation, the OPTM also ensures the satisfaction of these physical constraints. Numerical simulations and experiments are provided to validate the performance of the proposed controller.
本文通过全驱动系统(FAS)方法为机器人机械手提出了一种轨迹跟踪控制策略,该方法在大多数非线性控制器设计中已显示出其简单性和灵活性。然而,由于需要考虑未知的动力学模型、外部干扰、摩擦力和各种物理约束,机器人机械手的运动控制更为复杂。因此,FAS方法不能直接应用。为应对这些挑战,通过模型识别方法建立了机器人机械手的动力学模型。此外,基于所识别的模型,设计了一种结构简单的FAS复合控制策略,该策略通过在内环集成高阶干扰观测器(HODO),在外环集成FAS轨迹跟踪控制器来实现。具体而言,HODO用于处理不确定动力学和外部干扰。此外,使用基于梯度的最优参数调整方法(OPTM)对控制器增益进行优化。通过在公式中施加关节角度约束、关节角速度约束和输入扭矩限制,OPTM还确保了这些物理约束得到满足。提供了数值模拟和实验来验证所提出控制器的性能。