Balaghi Negar, Fernandez-Gonzalez Rodrigo
Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, M5G 1M1, Canada. Electronic address: https://twitter.com/negberry.
Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, M5G 1M1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
Curr Opin Cell Biol. 2024 Dec;91:102435. doi: 10.1016/j.ceb.2024.102435. Epub 2024 Oct 7.
As animals develop, molecules, cells, and cell ensembles move in beautifully orchestrated choreographies. Movement at each of these scales requires generation of mechanical force. In eukaryotic cells, the actomyosin cytoskeleton generates mechanical forces. Continuous advances in in vivo microscopy have enabled visualization and quantitative assessment of actomyosin dynamics and force generation, within and across cells, in living embryos. Recent studies reveal that actomyosin networks can form periodic waves in vivo. Here, we highlight contributions of actomyosin waves to molecular transport, cell movement, and cell coordination in developing embryos.
随着动物的发育,分子、细胞和细胞集合体以精心编排的方式移动。这些尺度上的每一个移动都需要产生机械力。在真核细胞中,肌动球蛋白细胞骨架产生机械力。体内显微镜技术的不断进步使得在活胚胎中可视化和定量评估细胞内和细胞间的肌动球蛋白动力学及力的产生成为可能。最近的研究表明,肌动球蛋白网络在体内可形成周期性波。在这里,我们强调肌动球蛋白波对发育中胚胎的分子运输、细胞运动和细胞协调的作用。