School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; PLA Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China.
Int J Biol Macromol. 2024 Nov;281(Pt 2):136215. doi: 10.1016/j.ijbiomac.2024.136215. Epub 2024 Oct 6.
The distinctive composition and functions of osteochondral structures result in constrained regeneration. Insufficient healing processes may precipitate the emergence of tissue growth disorders or excessive subchondral bone formation, which can culminate in the deterioration and failure of osteochondral tissue repair. To overcome these limitations, materials designed for osteochondral repair must provide region-specific modulation of the microenvironment and mechanical compatibility. To address these challenges, we propose a method to create continuous hydrogels with distinct structural and functional properties by a precise cross-linking method. We have developed an innovative polyurethane enriched with dimethylglyoxime, facilitating the coordinated loading and precise release of Zn. This strategy enables the meticulous control of alginate cross-linking, resulting in an elastic gradient hydrogel that closely resembles the osteochondral interface. The SeSe within the hydrogel effectively modulates the inflammatory microenvironment and fosters the M2 polarization of macrophages. The hydrogel's lower layer is designed to rapidly release Zn, thereby enhancing bone regeneration. The upper layer is intended to prevent bone overgrowth and stimulate chondrogenic differentiation. This dual-layer strategy allows targeted stimuli to each region, promoting the seamless integration of neoosteochondral tissue. Our study demonstrates the potential of this stratified hydrogel in achieving uniform and smooth osteochondral tissue regeneration.
由于软骨-骨结构的独特组成和功能,其再生能力受到限制。如果愈合过程不足,可能会导致组织生长障碍或过度的软骨下骨形成,从而导致软骨-骨组织修复的恶化和失败。为了克服这些限制,用于软骨-骨修复的材料必须提供针对特定区域的微环境调节和机械兼容性。为了解决这些挑战,我们提出了一种通过精确交联方法创建具有独特结构和功能特性的连续水凝胶的方法。我们开发了一种富含二甲基乙二肟的新型聚氨酯,便于协调负载和精确释放 Zn。这种策略可以精细控制藻酸盐的交联,从而形成类似于软骨-骨界面的弹性梯度水凝胶。水凝胶中的 SeSe 有效地调节炎症微环境,促进巨噬细胞的 M2 极化。水凝胶的下层设计用于快速释放 Zn,从而促进骨再生。上层旨在防止骨过度生长并刺激软骨分化。这种双层策略允许对每个区域进行靶向刺激,促进新的软骨-骨组织的无缝整合。我们的研究表明,这种分层水凝胶在实现均匀和光滑的软骨-骨组织再生方面具有潜力。