Department of Radiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China.
Department of Nuclear Medicine, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541001, People's Republic of China.
J Cancer Res Clin Oncol. 2024 Oct 9;150(10):449. doi: 10.1007/s00432-024-05969-y.
This study assesses the reliability of deep learning models based on planar whole-body bone scintigraphy for diagnosing Skull base invasion (SBI) in nasopharyngeal carcinoma (NPC) patients.
In this multicenter study, a deep learning model was developed using data from one center with a 7:3 allocation to training and internal test sets, to diagnose SBI in patients newly diagnosed with NPC using planar whole-body bone scintigraphy. Patients were diagnosed based on a composite reference standard incorporating radiologic and follow-up data. Ten different convolutional neural network (CNN) models were applied to both whole-image and partial-image input modes to determine the optimal model for each analysis. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), calibration, decision curve analysis (DCA), and compared with expert assessments by two nuclear medicine physicians.
The best-performing model using partial-body input achieved AUCs of 0.80 (95% CI: 0.73, 0.86) in the internal test set, 0.84 (95% CI: 0.77, 0.91) in the external cohort, and 0.78 (95% CI: 0.73, 0.83) in the treatment test cohort. Calibration curves and DCA confirmed the models' excellent discrimination, calibration, and potential clinical utility across internal and external datasets. The AUCs of both nuclear medicine physicians were lower than those of the best-performing deep learning model in external test set (AUC: 0.75 vs. 0.77 vs. 0.84).
Deep learning models utilizing partial-body input from planar whole-body bone scintigraphy demonstrate high discriminatory power for diagnosing SBI in NPC patients, surpassing experienced nuclear medicine physicians.
本研究评估了基于平面全身骨闪烁显像的深度学习模型诊断鼻咽癌(NPC)患者颅底侵犯(SBI)的可靠性。
在这项多中心研究中,使用来自一个中心的数据开发了一个深度学习模型,采用 7:3 的分配比例将数据分为训练集和内部测试集,用于通过平面全身骨闪烁显像诊断新诊断为 NPC 的患者的 SBI。患者的诊断基于综合参考标准,包括影像学和随访数据。应用 10 种不同的卷积神经网络(CNN)模型对全图像和部分图像输入模式进行分析,以确定每种分析的最佳模型。使用受试者工作特征曲线下面积(AUC)、校准、决策曲线分析(DCA)评估模型性能,并与两名核医学医师的专家评估进行比较。
内部测试集中,使用部分身体输入的最佳性能模型的 AUC 为 0.80(95%CI:0.73,0.86),外部队列为 0.84(95%CI:0.77,0.91),治疗测试队列为 0.78(95%CI:0.73,0.83)。校准曲线和 DCA 证实了模型在内部和外部数据集之间具有出色的区分度、校准和潜在的临床实用性。外部测试集中,两名核医学医师的 AUC 均低于最佳性能深度学习模型的 AUC(AUC:0.75 比 0.77 比 0.84)。
利用平面全身骨闪烁显像的部分身体输入的深度学习模型对诊断 NPC 患者的 SBI 具有较高的区分能力,优于经验丰富的核医学医师。