文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于人工智能的全身骨闪烁扫描分析:最优深度学习算法的探索及与人类观察者表现的比较。

Artificial intelligence-based analysis of whole-body bone scintigraphy: The quest for the optimal deep learning algorithm and comparison with human observer performance.

机构信息

Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland.

Department of Medical Physics, School of Medicine, Iran University of Medical Science, Tehran, Iran; Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.

出版信息

Z Med Phys. 2024 May;34(2):242-257. doi: 10.1016/j.zemedi.2023.01.008. Epub 2023 Mar 15.


DOI:10.1016/j.zemedi.2023.01.008
PMID:36932023
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11156776/
Abstract

PURPOSE: Whole-body bone scintigraphy (WBS) is one of the most widely used modalities in diagnosing malignant bone diseases during the early stages. However, the procedure is time-consuming and requires vigour and experience. Moreover, interpretation of WBS scans in the early stages of the disorders might be challenging because the patterns often reflect normal appearance that is prone to subjective interpretation. To simplify the gruelling, subjective, and prone-to-error task of interpreting WBS scans, we developed deep learning (DL) models to automate two major analyses, namely (i) classification of scans into normal and abnormal and (ii) discrimination between malignant and non-neoplastic bone diseases, and compared their performance with human observers. MATERIALS AND METHODS: After applying our exclusion criteria on 7188 patients from three different centers, 3772 and 2248 patients were enrolled for the first and second analyses, respectively. Data were split into two parts, including training and testing, while a fraction of training data were considered for validation. Ten different CNN models were applied to single- and dual-view input (posterior and anterior views) modes to find the optimal model for each analysis. In addition, three different methods, including squeeze-and-excitation (SE), spatial pyramid pooling (SPP), and attention-augmented (AA), were used to aggregate the features for dual-view input models. Model performance was reported through area under the receiver operating characteristic (ROC) curve (AUC), accuracy, sensitivity, and specificity and was compared with the DeLong test applied to ROC curves. The test dataset was evaluated by three nuclear medicine physicians (NMPs) with different levels of experience to compare the performance of AI and human observers. RESULTS: DenseNet121_AA (DensNet121, with dual-view input aggregated by AA) and InceptionResNetV2_SPP achieved the highest performance (AUC = 0.72) for the first and second analyses, respectively. Moreover, on average, in the first analysis, Inception V3 and InceptionResNetV2 CNN models and dual-view input with AA aggregating method had superior performance. In addition, in the second analysis, DenseNet121 and InceptionResNetV2 as CNN methods and dual-view input with AA aggregating method achieved the best results. Conversely, the performance of AI models was significantly higher than human observers for the first analysis, whereas their performance was comparable in the second analysis, although the AI model assessed the scans in a drastically lower time. CONCLUSION: Using the models designed in this study, a positive step can be taken toward improving and optimizing WBS interpretation. By training DL models with larger and more diverse cohorts, AI could potentially be used to assist physicians in the assessment of WBS images.

摘要

目的:全身骨闪烁扫描(WBS)是诊断恶性骨疾病早期阶段的最广泛使用的方法之一。然而,该过程耗时且需要活力和经验。此外,由于模式通常反映易于主观解释的正常外观,因此在疾病的早期阶段解释 WBS 扫描可能具有挑战性。为了简化解释 WBS 扫描的艰巨、主观和容易出错的任务,我们开发了深度学习(DL)模型来自动执行两个主要分析,即(i)将扫描分类为正常和异常,以及(ii)区分恶性和非肿瘤性骨疾病,并将其性能与人类观察者进行比较。

材料和方法:在对来自三个不同中心的 7188 名患者应用排除标准后,分别为第一项和第二项分析招募了 3772 名和 2248 名患者。数据分为两部分,包括培训和测试,同时一部分培训数据用于验证。应用了十种不同的 CNN 模型,用于单视图和双视图输入(后视图和前视图)模式,以找到每个分析的最佳模型。此外,使用挤压激励(SE)、空间金字塔池化(SPP)和注意力增强(AA)三种不同的方法来聚合双视图输入模型的特征。通过接收者操作特征(ROC)曲线下的面积(AUC)、准确性、敏感性和特异性来报告模型性能,并应用 DeLong 测试比较 ROC 曲线。使用不同经验水平的三位核医学医师(NMP)评估测试数据集,以比较 AI 和人类观察者的性能。

结果:DenseNet121_AA(DensNet121,通过 AA 聚合双视图输入)和 InceptionResNetV2_SPP 在第一项和第二项分析中分别实现了最高性能(AUC=0.72)。此外,平均而言,在第一项分析中,Inception V3 和 InceptionResNetV2 CNN 模型以及具有 AA 聚合方法的双视图输入具有更好的性能。此外,在第二项分析中,DenseNet121 和 InceptionResNetV2 作为 CNN 方法和具有 AA 聚合方法的双视图输入实现了最佳结果。相反,对于第一项分析,AI 模型的性能明显高于人类观察者,而在第二项分析中,它们的性能相当,尽管 AI 模型在极短的时间内评估了扫描。

结论:使用本研究设计的模型,可以朝着改善和优化 WBS 解释迈出积极的一步。通过使用更大和更多样化的队列训练 DL 模型,人工智能有可能被用于协助医生评估 WBS 图像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f2e/11156776/008abf283287/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f2e/11156776/5909ccce1f61/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f2e/11156776/da239e24f049/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f2e/11156776/cb81808d475d/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f2e/11156776/bea603cd7a51/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f2e/11156776/d4d01288c5e7/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f2e/11156776/19cf12758bca/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f2e/11156776/b9c3ed429596/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f2e/11156776/a6ce65276ca0/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f2e/11156776/008abf283287/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f2e/11156776/5909ccce1f61/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f2e/11156776/da239e24f049/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f2e/11156776/cb81808d475d/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f2e/11156776/bea603cd7a51/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f2e/11156776/d4d01288c5e7/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f2e/11156776/19cf12758bca/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f2e/11156776/b9c3ed429596/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f2e/11156776/a6ce65276ca0/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f2e/11156776/008abf283287/gr9.jpg

相似文献

[1]
Artificial intelligence-based analysis of whole-body bone scintigraphy: The quest for the optimal deep learning algorithm and comparison with human observer performance.

Z Med Phys. 2024-5

[2]
Deep learning model using planar whole-body bone scintigraphy for diagnosis of skull base invasion in patients with nasopharyngeal carcinoma.

J Cancer Res Clin Oncol. 2024-10-9

[3]
Deep neural network based artificial intelligence assisted diagnosis of bone scintigraphy for cancer bone metastasis.

Sci Rep. 2020-10-12

[4]
Automatic identification of suspicious bone metastatic lesions in bone scintigraphy using convolutional neural network.

BMC Med Imaging. 2021-9-4

[5]
Clinical performance of deep learning-enhanced ultrafast whole-body scintigraphy in patients with suspected malignancy.

BMC Med Imaging. 2024-9-9

[6]
Bone metastasis classification using whole body images from prostate cancer patients based on convolutional neural networks application.

PLoS One. 2020-8-14

[7]
Development of a computer-aided diagnostic scheme for detection of interval changes in successive whole-body bone scans.

Med Phys. 2007-1

[8]
Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.

Clin Orthop Relat Res. 2023-11-1

[9]
How much can AI see in early pregnancy: A multi-center study of fetus head characterization in week 10-14 in ultrasound using deep learning.

Comput Methods Programs Biomed. 2022-11

[10]
More advantages in detecting bone and soft tissue metastases from prostate cancer using F-PSMA PET/CT.

Hell J Nucl Med. 2019

引用本文的文献

[1]
Does the tail show when the nose knows? Artificial intelligence outperforms human experts at predicting detection dogs finding their target through tail kinematics.

R Soc Open Sci. 2025-8-13

[2]
Automatic detecting multiple bone metastases in breast cancer using deep learning based on low-resolution bone scan images.

Sci Rep. 2025-3-6

[3]
Artificial intelligence-powered coronary artery disease diagnosis from SPECT myocardial perfusion imaging: a comprehensive deep learning study.

Eur J Nucl Med Mol Imaging. 2025-2-20

[4]
Artificial intelligence-based cardiac transthyretin amyloidosis detection and scoring in scintigraphy imaging: multi-tracer, multi-scanner, and multi-center development and evaluation study.

Eur J Nucl Med Mol Imaging. 2025-2-5

[5]
Deep learning automatically distinguishes myocarditis patients from normal subjects based on MRI.

Int J Cardiovasc Imaging. 2024-12

[6]
Deep learning model using planar whole-body bone scintigraphy for diagnosis of skull base invasion in patients with nasopharyngeal carcinoma.

J Cancer Res Clin Oncol. 2024-10-9

[7]
Clinical performance of deep learning-enhanced ultrafast whole-body scintigraphy in patients with suspected malignancy.

BMC Med Imaging. 2024-9-9

[8]
Artificial intelligence in medical physics.

Z Med Phys. 2024-5

[9]
Application of Nuclear Medicine Techniques in Musculoskeletal Infection: Current Trends and Future Prospects.

J Clin Med. 2024-2-13

[10]
Comparison of Machine Learning Algorithms Using Manual/Automated Features on 12-Lead Signal Electrocardiogram Classification: A Large Cohort Study on Students Aged Between 6 to 18 Years Old.

Cardiovasc Eng Technol. 2023-12

本文引用的文献

[1]
Decentralized collaborative multi-institutional PET attenuation and scatter correction using federated deep learning.

Eur J Nucl Med Mol Imaging. 2023-3

[2]
Deep-TOF-PET: Deep learning-guided generation of time-of-flight from non-TOF brain PET images in the image and projection domains.

Hum Brain Mapp. 2022-11

[3]
Decentralized Distributed Multi-institutional PET Image Segmentation Using a Federated Deep Learning Framework.

Clin Nucl Med. 2022-7-1

[4]
Unsupervised pseudo CT generation using heterogenous multicentric CT/MR images and CycleGAN: Dosimetric assessment for 3D conformal radiotherapy.

Comput Biol Med. 2022-4

[5]
Deep Learning for the Automatic Diagnosis and Analysis of Bone Metastasis on Bone Scintigrams.

Cancer Manag Res. 2022-1-3

[6]
Detection of Bone Metastases on Bone Scans through Image Classification with Contrastive Learning.

J Pers Med. 2021-11-24

[7]
Deep learning-based fully automated Z-axis coverage range definition from scout scans to eliminate overscanning in chest CT imaging.

Insights Imaging. 2021-11-6

[8]
DeepTOFSino: A deep learning model for synthesizing full-dose time-of-flight bin sinograms from their corresponding low-dose sinograms.

Neuroimage. 2021-12-15

[9]
Personalized brachytherapy dose reconstruction using deep learning.

Comput Biol Med. 2021-9

[10]
Diagnostic performance of deep learning models for detecting bone metastasis on whole-body bone scan in prostate cancer.

Eur J Nucl Med Mol Imaging. 2022-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索