基于深度学习的骨闪烁照相术含转移骨病变病灶的识别。

Deep learning based identification of bone scintigraphies containing metastatic bone disease foci.

机构信息

The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.

Department of Radiology and Nuclear Medicine, Columbia University Irving Medical Center, New York, United States.

出版信息

Cancer Imaging. 2023 Jan 25;23(1):12. doi: 10.1186/s40644-023-00524-3.

Abstract

PURPOSE

Metastatic bone disease (MBD) is the most common form of metastases, most frequently deriving from prostate cancer. MBD is screened with bone scintigraphy (BS), which have high sensitivity but low specificity for the diagnosis of MBD, often requiring further investigations. Deep learning (DL) - a machine learning technique designed to mimic human neuronal interactions- has shown promise in the field of medical imaging analysis for different purposes, including segmentation and classification of lesions. In this study, we aim to develop a DL algorithm that can classify areas of increased uptake on bone scintigraphy scans.

METHODS

We collected 2365 BS from three European medical centres. The model was trained and validated on 1203 and 164 BS scans respectively. Furthermore we evaluated its performance on an external testing set composed of 998 BS scans. We further aimed to enhance the explainability of our developed algorithm, using activation maps. We compared the performance of our algorithm to that of 6 nuclear medicine physicians.

RESULTS

The developed DL based algorithm is able to detect MBD on BSs, with high specificity and sensitivity (0.80 and 0.82 respectively on the external test set), in a shorter time compared to the nuclear medicine physicians (2.5 min for AI and 30 min for nuclear medicine physicians to classify 134 BSs). Further prospective validation is required before the algorithm can be used in the clinic.

摘要

目的

转移性骨病(MBD)是最常见的转移形式,最常来源于前列腺癌。MBD 通过骨闪烁扫描(BS)进行筛查,BS 对 MBD 的诊断具有很高的灵敏度但特异性较低,通常需要进一步检查。深度学习(DL)——一种旨在模拟人类神经元相互作用的机器学习技术——在医学成像分析的不同领域显示出了应用前景,包括病变的分割和分类。在这项研究中,我们旨在开发一种可以对骨闪烁扫描扫描中摄取增加的区域进行分类的 DL 算法。

方法

我们从三个欧洲医疗中心收集了 2365 份 BS。该模型分别在 1203 份和 164 份 BS 扫描上进行了训练和验证。此外,我们还在由 998 份 BS 扫描组成的外部测试集上评估了其性能。我们进一步旨在通过激活图来提高我们开发的算法的可解释性。我们将该算法的性能与 6 位核医学医师的性能进行了比较。

结果

与核医学医师相比,开发的基于 DL 的算法能够在较短的时间内(AI 为 2.5 分钟,核医学医师为 30 分钟对 134 份 BS 进行分类),通过 BS 更准确地检测到 MBD,具有较高的特异性和灵敏度(在外部测试集上分别为 0.80 和 0.82)。在该算法可以在临床上使用之前,还需要进一步的前瞻性验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9920/9875407/cbafe69e53f5/40644_2023_524_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索