Bernhard Rémi, Bletterer Arnaud, Le Caro Maëlle, García Álvarez Estrella, Kostov Belchin, Herrera Egea Diego
QuantifiCare, 06410, Biot, France.
, Almirall, 08980 Sant Feliu de Llobregat, Barcelona, Spain.
Dermatol Ther (Heidelb). 2024 Nov;14(11):2953-2969. doi: 10.1007/s13555-024-01283-0. Epub 2024 Oct 8.
Developing automatic acne vulgaris grading systems based on machine learning is an expensive endeavor in terms of data acquisition. A machine learning practitioner will need to gather high-resolution pictures from a considerable number of different patients, with a well-balanced distribution between acne severity grades and potentially very tedious labeling. We developed a deep learning model to grade acne severity with respect to the Investigator's Global Assessment (IGA) scale that can be trained on low-resolution images, with pictures from a small number of different patients, a strongly imbalanced severity grade distribution and minimal labeling.
A total of 1374 triplets of images (frontal and lateral views) from 391 different patients suffering from acne labeled with the IGA severity grade by an expert dermatologist were used to train and validate a deep learning model that predicts the IGA severity grade.
On the test set we obtained 66.67% accuracy with an equivalent performance for all grades despite the highly imbalanced severity grade distribution of our database. Importantly, we obtained performance on par with more tedious methods in terms of data acquisition which have the same simple labeling as ours but require either a more balanced severity grade distribution or large numbers of high-resolution images.
Our deep learning model demonstrated promising accuracy despite the limited data set on which it was trained, indicating its potential for further development both as an assistance tool for medical practitioners and as a way to provide patients with an immediately available and standardized acne grading tool.
chinadrugtrials.org.cn identifier CTR20211314.
基于机器学习开发自动寻常痤疮分级系统在数据采集方面是一项成本高昂的工作。机器学习从业者需要从大量不同患者那里收集高分辨率图片,且痤疮严重程度等级之间的分布要均衡,同时标注工作可能非常繁琐。我们开发了一种深度学习模型,可根据研究者整体评估(IGA)量表对痤疮严重程度进行分级,该模型可以在低分辨率图像上进行训练,使用来自少数不同患者的图片,严重程度等级分布严重失衡且标注最少。
总共1374组三联图像(正视图和侧视图)来自391名患有痤疮的不同患者,由皮肤科专家根据IGA严重程度等级进行标注,用于训练和验证一个预测IGA严重程度等级的深度学习模型。
在测试集上,尽管我们数据库中严重程度等级分布高度失衡,但所有等级的准确率均为66.67%。重要的是,在数据采集方面,我们获得了与更繁琐方法相当的性能,这些方法与我们的方法具有相同的简单标注,但需要更均衡的严重程度等级分布或大量高分辨率图像。
尽管我们的深度学习模型训练数据集有限,但其准确率很有前景,这表明它作为医生辅助工具以及为患者提供即时可用的标准化痤疮分级工具都具有进一步发展的潜力。
中国药物临床试验登记与信息公示平台标识符CTR20211314。