Suppr超能文献

基于社交媒体帖子的机器学习评估苯二氮䓬类药物的信念和态度:一项观察性研究。

Assessment of beliefs and attitudes towards benzodiazepines using machine learning based on social media posts: an observational study.

机构信息

Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain.

Department of Medicine and Medical Specialities, University of Alcala, Alcala de Henares, Madrid, 28801, Spain.

出版信息

BMC Psychiatry. 2024 Oct 8;24(1):659. doi: 10.1186/s12888-024-06111-5.

Abstract

BACKGROUND

Benzodiazepines are frequently prescribed drugs; however, their prolonged use can lead to tolerance, dependence, and other adverse effects. Despite these risks, long-term use remains common, presenting a public health concern. This study aims to explore the beliefs and opinions held by the public regarding benzodiazepines, as understanding these perspectives may provide insights into their usage patterns.

METHODS

We collected public tweets published in English between January 1, 2019, and October 31, 2020, that mentioned benzodiazepines. The content of each tweet and the characteristics of the users were analyzed using a mixed-method approach, including manual analysis and semi-supervised machine learning.

RESULTS

Over half of the Twitter users highlighted the efficacy of benzodiazepines, with minimal discussion of their side effects. The most active participants in these conversations were patients and their families, with health professionals and institutions being notably absent. Additionally, the drugs most frequently mentioned corresponded with those most commonly prescribed by healthcare professionals.

CONCLUSIONS

Social media platforms offer valuable insights into users' experiences and opinions regarding medications. Notably, the sentiment towards benzodiazepines is predominantly positive, with users viewing them as effective while rarely mentioning side effects. This analysis underscores the need to educate physicians, patients, and their families about the potential risks associated with benzodiazepine use and to promote clinical guidelines that support the proper management of these medications.

CLINICAL TRIAL NUMBER

Not applicable.

摘要

背景

苯二氮䓬类药物是常用处方药物;然而,长期使用会导致耐受、依赖和其他不良反应。尽管存在这些风险,长期使用仍很常见,这是一个公共卫生关注点。本研究旨在探索公众对苯二氮䓬类药物的信念和看法,因为了解这些观点可能有助于了解它们的使用模式。

方法

我们收集了 2019 年 1 月 1 日至 2020 年 10 月 31 日期间发布的以英文发表的公众推文,这些推文提到了苯二氮䓬类药物。使用混合方法,包括手动分析和半监督机器学习,分析每条推文的内容和用户的特征。

结果

超过一半的 Twitter 用户强调了苯二氮䓬类药物的疗效,很少讨论其副作用。这些对话中最活跃的参与者是患者及其家属,而卫生专业人员和机构则明显缺席。此外,最常提到的药物与医疗保健专业人员最常开的药物相对应。

结论

社交媒体平台为了解用户对药物的体验和看法提供了有价值的见解。值得注意的是,对苯二氮䓬类药物的情绪主要是积极的,用户认为它们有效,而很少提到副作用。这项分析强调了需要教育医生、患者及其家属使用苯二氮䓬类药物的潜在风险,并促进支持这些药物合理管理的临床指南。

临床试验编号

不适用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1840/11462674/79385cfde703/12888_2024_6111_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验