Suppr超能文献

高通量计算筛选固相结合肽。

High-Throughput Computational Screening of Solid-Binding Peptides.

机构信息

Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03784, United States.

Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States.

出版信息

J Chem Theory Comput. 2024 Apr 9;20(7):2959-2968. doi: 10.1021/acs.jctc.3c01286. Epub 2024 Mar 18.

Abstract

Inspired by biomineralization, a naturally occurring, protein-facilitated process, solid-binding peptides (SBPs) have gained much attention for their potential to fabricate various shaped nanocrystals and hierarchical nanostructures. The advantage of SBPs over other traditionally used synthetic polymers or short ligands is their tunable interaction with the solid material surface via carefully programmed sequence and being solution-dependent simultaneously. However, designing a sequence with targeted binding affinity or selectivity often involves intensive processes such as phage display, and only a limited number of sequences can be identified. Other computational efforts have also been introduced, but the validation process remains prohibitively expensive once a suitable sequence has been identified. In this paper, we present a new model to rapidly estimate the binding free energy of any given sequence to a solid surface. We show how the overall binding of a polypeptide can be estimated from the free energy contribution of each residue based on the statistics of the thermodynamically stable structure ensemble. We validated our model using five silica-binding peptides of different binding affinities and lengths and showed that the model is accurate and robust across a wider range of chemistries and binding strengths. The computational cost of this method can be as low as 3% of the commonly used enhanced sampling scheme for similar studies and has a great potential to be used in high-throughput algorithms to obtain larger training data sets for machine learning SBP screening.

摘要

受生物矿化作用的启发,一种自然发生的、蛋白质辅助的过程,固体结合肽 (SBPs) 因其能够制造各种形状的纳米晶体和分级纳米结构而受到广泛关注。与其他传统使用的合成聚合物或短配体相比,SBPs 的优势在于其通过精心编程的序列与固体材料表面的可调相互作用,同时又依赖于溶液。然而,设计具有靶向结合亲和力或选择性的序列通常涉及密集的过程,例如噬菌体展示,并且只能识别有限数量的序列。其他计算方法也已经被引入,但一旦确定了合适的序列,验证过程仍然非常昂贵。在本文中,我们提出了一种新的模型,用于快速估计任何给定序列与固体表面的结合自由能。我们展示了如何根据热力学稳定结构集合的统计信息,从每个残基的自由能贡献来估计多肽的整体结合。我们使用五个具有不同结合亲和力和长度的二氧化硅结合肽对我们的模型进行了验证,结果表明该模型在更广泛的化学和结合强度范围内是准确和稳健的。与类似研究中常用的增强采样方案相比,该方法的计算成本可以低至 3%,并且非常有潜力用于高通量算法,以获得用于机器学习 SBP 筛选的更大训练数据集。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验