Suppr超能文献

机器学习工具在化学科学中的评价指南。

Evaluation guidelines for machine learning tools in the chemical sciences.

机构信息

Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK.

Novartis Institutes for BioMedical Research, Novartis Pharma, Novartis Campus, Basel, Switzerland.

出版信息

Nat Rev Chem. 2022 Jun;6(6):428-442. doi: 10.1038/s41570-022-00391-9. Epub 2022 May 24.

Abstract

Machine learning (ML) promises to tackle the grand challenges in chemistry and speed up the generation, improvement and/or ordering of research hypotheses. Despite the overarching applicability of ML workflows, one usually finds diverse evaluation study designs. The current heterogeneity in evaluation techniques and metrics leads to difficulty in (or the impossibility of) comparing and assessing the relevance of new algorithms. Ultimately, this may delay the digitalization of chemistry at scale and confuse method developers, experimentalists, reviewers and journal editors. In this Perspective, we critically discuss a set of method development and evaluation guidelines for different types of ML-based publications, emphasizing supervised learning. We provide a diverse collection of examples from various authors and disciplines in chemistry. While taking into account varying accessibility across research groups, our recommendations focus on reporting completeness and standardizing comparisons between tools. We aim to further contribute to improved ML transparency and credibility by suggesting a checklist of retro-/prospective tests and dissecting their importance. We envisage that the wide adoption and continuous update of best practices will encourage an informed use of ML on real-world problems related to the chemical sciences.

摘要

机器学习 (ML) 有望解决化学领域的重大挑战,并加速研究假设的产生、改进和/或排序。尽管 ML 工作流程具有总体适用性,但人们通常会发现各种评估研究设计。当前评估技术和指标的异质性导致难以(或不可能)比较和评估新算法的相关性。最终,这可能会延迟化学的数字化进程,并使方法开发人员、实验人员、评论员和期刊编辑感到困惑。在本观点中,我们批判性地讨论了一套针对不同类型基于 ML 的出版物的方法开发和评估指南,重点强调监督学习。我们提供了来自化学领域不同作者和学科的多样化示例。在考虑到不同研究小组之间的可访问性的同时,我们的建议侧重于报告的完整性和工具之间的比较标准化。我们旨在通过建议一系列回顾/前瞻性测试并剖析其重要性,进一步提高 ML 的透明度和可信度。我们设想,广泛采用和持续更新最佳实践将鼓励在与化学科学相关的实际问题上明智地使用 ML。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验