Suppr超能文献

用于电化学储能科学发现的生成式人工智能:纳米和微观尺度的现状与展望

GenAI for Scientific Discovery in Electrochemical Energy Storage: State-of-the-Art and Perspectives from Nano- and Micro-Scale.

作者信息

Li Shuangqi, You Fengqi

机构信息

Systems Engineering, Cornell University, Ithaca, NY, 14853, USA.

Cornell University AI for Science Institute (CUAISci), Cornell University, Ithaca, NY, 14853, USA.

出版信息

Small. 2024 Dec;20(50):e2406153. doi: 10.1002/smll.202406153. Epub 2024 Oct 9.

Abstract

The transition to electric vehicles (EVs) and the increased reliance on renewable energy sources necessitate significant advancements in electrochemical energy storage systems. Fuel cells, lithium-ion batteries, and flow batteries play a key role in enhancing the efficiency and sustainability of energy usage in transportation and storage. Despite their potential, these technologies face limitations such as high costs, material scarcity, and efficiency challenges. This research introduces a novel integration of Generative AI (GenAI) within electrochemical energy storage systems to address these issues. By leveraging advanced GenAI techniques like Generative Adversarial Networks, autoencoders, diffusion and flow-based models, and multimodal large language models, this paper demonstrates significant improvements in material discovery, battery design, performance prediction, and lifecycle management across different types of electrochemical storage systems. The research further emphasizes the importance of nano- and micro-scale interactions, providing detailed insights into optimizing these interactions for improved efficiency and longevity. Additionally, the paper discusses the challenges and future directions for integrating GenAI in energy storage research, highlighting the importance of data quality, model transparency, workflow integration, scalability, and ethical considerations. By addressing these aspects, this research sets a new benchmark for the use of GenAI in battery development, promoting sustainable, efficient, and safer energy solutions.

摘要

向电动汽车(EV)的转型以及对可再生能源的日益依赖,使得电化学储能系统必须取得重大进展。燃料电池、锂离子电池和液流电池在提高交通运输和储能领域能源使用的效率和可持续性方面发挥着关键作用。尽管这些技术具有潜力,但它们面临着诸如成本高、材料稀缺和效率挑战等限制。本研究引入了生成式人工智能(GenAI)在电化学储能系统中的一种新型集成,以解决这些问题。通过利用生成对抗网络、自动编码器、基于扩散和流的模型以及多模态大语言模型等先进的GenAI技术,本文展示了在不同类型的电化学储能系统的材料发现、电池设计、性能预测和生命周期管理方面的显著改进。该研究进一步强调了纳米和微观尺度相互作用的重要性,提供了关于优化这些相互作用以提高效率和延长寿命的详细见解。此外,本文讨论了将GenAI集成到储能研究中的挑战和未来方向,强调了数据质量、模型透明度、工作流程集成、可扩展性和伦理考量的重要性。通过解决这些方面的问题,本研究为GenAI在电池开发中的应用设定了新的基准,推动了可持续、高效和更安全的能源解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验