Suppr超能文献

深度学习衍生的输入函数在小鼠动态[F]FDG PET成像中的应用

Deep-learning-derived input function in dynamic [F]FDG PET imaging of mice.

作者信息

Kuttner Samuel, Luppino Luigi T, Convert Laurence, Sarrhini Otman, Lecomte Roger, Kampffmeyer Michael C, Sundset Rune, Jenssen Robert

机构信息

The PET Imaging Center, University Hospital of North Norway, Tromsø, Norway.

UiT Machine Learning Group, Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway.

出版信息

Front Nucl Med. 2024 Apr 11;4:1372379. doi: 10.3389/fnume.2024.1372379. eCollection 2024.

Abstract

Dynamic positron emission tomography and kinetic modeling play a critical role in tracer development research using small animals. Kinetic modeling from dynamic PET imaging requires accurate knowledge of an input function, ideally determined through arterial blood sampling. Arterial cannulation in mice, however, requires complex, time-consuming and terminal surgery, meaning that longitudinal studies are impossible. The aim of the current work was to develop and evaluate a non-invasive, deep-learning-based prediction model (DLIF) that directly takes the PET data as input to predict a usable input function. We first trained and evaluated the DLIF model on 68 [F]Fluorodeoxyglucose mouse scans with image-derived targets using cross validation. Subsequently, we evaluated the performance of a trained DLIF model on an external dataset consisting of 8 mouse scans where the input function was measured by continuous arterial blood sampling. The results showed that the predicted DLIF and image-derived targets were similar, and the net influx rate constants following from Patlak modeling using DLIF as input function were strongly correlated to the corresponding values obtained using the image-derived input function. There were somewhat larger discrepancies when evaluating the model on the external dataset, which could be attributed to systematic differences in the experimental setup between the two datasets. In conclusion, our non-invasive DLIF prediction method may be a viable alternative to arterial blood sampling in small animal [F]FDG imaging. With further validation, DLIF could overcome the need for arterial cannulation and allow fully quantitative and longitudinal experiments in PET imaging studies of mice.

摘要

动态正电子发射断层扫描和动力学建模在使用小动物的示踪剂开发研究中起着关键作用。从动态PET成像进行动力学建模需要准确了解输入函数,理想情况下通过动脉血采样来确定。然而,小鼠的动脉插管需要复杂、耗时且为终末手术,这意味着纵向研究是不可能的。当前工作的目的是开发并评估一种基于深度学习的非侵入性预测模型(DLIF),该模型直接将PET数据作为输入来预测可用的输入函数。我们首先使用交叉验证在具有图像衍生目标的68[F]氟脱氧葡萄糖小鼠扫描上训练和评估DLIF模型。随后,我们在一个由8次小鼠扫描组成的外部数据集上评估训练后的DLIF模型的性能,该数据集中的输入函数通过连续动脉血采样测量。结果表明,预测的DLIF与图像衍生目标相似,并且使用DLIF作为输入函数通过Patlak建模得到的净流入速率常数与使用图像衍生输入函数获得的相应值高度相关。在外部数据集上评估模型时存在一些较大差异,这可能归因于两个数据集之间实验设置的系统差异。总之,我们的非侵入性DLIF预测方法可能是小动物[F]FDG成像中动脉血采样的可行替代方法。通过进一步验证,DLIF可以克服动脉插管的需求,并允许在小鼠的PET成像研究中进行完全定量和纵向实验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03db/11460089/6f5b69445c3a/fnume-04-1372379-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验