Goluba Karina, Parfejevs Vadims, Rostoka Evita, Jekabsons Kaspars, Blake Ilze, Neimane Anastasija, Ule Annija Anete, Rimsa Roberts, Vangravs Reinis, Pcolkins Andrejs, Riekstina Una
Pharmaceutical Sciences Center, Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas iela 3, Riga, Latvia.
Institute of Solid State Physics, University of Latvia, Kengaraga iela 8, Riga, Latvia.
Mater Today Bio. 2024 Sep 21;29:101262. doi: 10.1016/j.mtbio.2024.101262. eCollection 2024 Dec.
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer characterised by poor survival rates and an increasing global incidence. Advances in the staging and categorization of pancreatic tumours, along with the discovery of functional mutations, have made precision treatments possible, which may lead to better clinical results. To further improve customized treatment approaches, in vitro models that can be used for functional drug sensitivity testing and precisely mimic the disease at the organ level are required. In this study, we present a workflow for creating a personalized PDAC chip utilising primary tumour-derived human pancreatic organoids (hPOs) and Human Umbilical Vein Endothelial Cells (HUVECs) to simulate the vascular barrier and tumour interactions within a PDMS-free organ-on-a-chip system. The patient PDAC tissue, expanded as tumour hPOs, could be cultured as adherent cells on the chip for more than 50 days, allowing continuous monitoring of cell viability through outflows from tumour and endothelial channels. Our findings demonstrate a gradual increase in cell density and cell turnover in the pancreatic tumor channel. Tumour-specific biomarkers, including CA-19.9, TIMP-1, Osteopontin, MIC-1, ICAM-1 and sAXL were consistently detected in the PDAC chip outflows. Comparative analyses between tissue culture plates and microfluidic conditions revealed significant differences in biomarker secretion patterns, highlighting the advantages of the microfluidics approach. This PDAC chip provides a stable, reproducible tumour model system with a functional endothelial cell barrier, suitable for drug sensitivity and secretory biomarker studies, thus serving as a platform for functional precision medicine application and multi-organ chip development.
胰腺导管腺癌(PDAC)是一种侵袭性很强的癌症,其特点是生存率低且全球发病率不断上升。胰腺肿瘤分期和分类的进展,以及功能性突变的发现,使得精准治疗成为可能,这可能会带来更好的临床效果。为了进一步改进定制化治疗方法,需要能够用于功能性药物敏感性测试并在器官水平精确模拟疾病的体外模型。在本研究中,我们展示了一种创建个性化PDAC芯片的工作流程,该流程利用原发性肿瘤衍生的人胰腺类器官(hPOs)和人脐静脉内皮细胞(HUVECs),在无聚二甲基硅氧烷(PDMS)的芯片上器官系统中模拟血管屏障和肿瘤相互作用。患者的PDAC组织作为肿瘤hPOs进行扩增后,可以作为贴壁细胞在芯片上培养超过50天,通过肿瘤和内皮通道的流出物持续监测细胞活力。我们的研究结果表明,胰腺肿瘤通道中的细胞密度和细胞周转率逐渐增加。在PDAC芯片流出物中持续检测到肿瘤特异性生物标志物,包括CA-19.9、基质金属蛋白酶组织抑制因子-1(TIMP-1)、骨桥蛋白、巨噬细胞抑制因子-1(MIC-1)、细胞间黏附分子-1(ICAM-1)和可溶性AXL(sAXL)。组织培养板和微流控条件之间的比较分析显示生物标志物分泌模式存在显著差异,突出了微流控方法的优势。这种PDAC芯片提供了一个稳定、可重复的肿瘤模型系统,具有功能性内皮细胞屏障,适用于药物敏感性和分泌性生物标志物研究,从而作为功能性精准医学应用和多器官芯片开发的平台。