Suppr超能文献

用于高效提升多硫化锂吸附和催化性能的碳化钒铌(VNbCT)双金属MXene衍生的VS-NbO@MXene异质结构

Vanadium niobium carbide (VNbCT) bimetallic MXene derived VS-NbO@MXene heterostructures for efficiently boosting the adsorption and catalytic performance of lithium polysulfide.

作者信息

Chen Yuqing, Huang Yongjie, Xu Qing, Yang Liying, Jiang Ningyi, Yin Shougen

机构信息

Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education) and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China.

Tianjin Key Laboratory of Quantum Optics and Intelligent Photonics, School of Science, Tianjin University of Technology, Tianjin 300384, China.

出版信息

Mater Horiz. 2024 Dec 9;11(24):6443-6454. doi: 10.1039/d4mh00674g.

Abstract

To alleviate the shuttle effect in lithium-sulfur (Li-S) batteries, the electrocatalytic conversion of polysulfides serves as a vital strategy. However, achieving a synergy that combines robust adsorption with high catalytic activity continues to pose significant challenges. Herein, a simple solid-state sintering method is employed to transform vanadium-niobium carbide MXene (VNbCT) into a heterogeneous structure of VS-NbO@VNbCT MXene (denoted as VS-NbO@MX). The NbO component immobilizes lithium polysulfides (LiPSs) at the electrode through its strong chemical affinity, while the VS fraction serves as an outstanding electrochemical catalyst, enhancing the reaction kinetics of sulfur precipitation. Furthermore, the VNbCT MXene precursor scaffold is preserved through the conversion and uniformly distributed throughout the composite, exhibiting excellent electrical conductivity. Thanks to the synergistic "capture-adsorption-catalysis" action on LiPSs, the VS-NbO@MX composite effectively restrains the shuttle effect. The as-prepared Li-S battery demonstrates a significant increase in specific capacity, reaching 1508 mA h g at 0.1C and maintaining a capacity decay of approximately 0.027% per cycle after 500 cycles at 1C and 766.1 mA h g at 5C. Even under a high sulfur loading of 5.75 mg cm, the battery can maintain a specific capacity of 596.6 mA h g and exhibit significant cycling stability after 100 cycles. DFT calculations indicate that the VS-NbO@MX heterostructure exhibits a higher binding energy of 5.34 eV and a lower decomposition barrier energy of 0.68 eV, presenting potential advantages in accelerating the conversion reactions of LiPSs. Our research offers a straightforward approach for designing metal oxide-sulfide heterostructured catalysts that deliver superior performance and enhance the electrocatalytic conversion of LiPSs, clearing the path for high performance Li-S batteries.

摘要

为缓解锂硫(Li-S)电池中的穿梭效应,多硫化物的电催化转化是一项至关重要的策略。然而,实现将强大吸附与高催化活性相结合的协同作用仍然面临重大挑战。在此,采用一种简单的固态烧结方法将钒铌碳化物MXene(VNbCT)转变为VS-NbO@VNbCT MXene的异质结构(记为VS-NbO@MX)。NbO组分通过其强化学亲和力将多硫化锂(LiPSs)固定在电极上,而VS部分作为出色的电化学催化剂,增强了硫沉淀的反应动力学。此外,VN bCT MXene前驱体支架通过转化得以保留并均匀分布在整个复合材料中,展现出优异的导电性。得益于对LiPSs的协同“捕获-吸附-催化”作用,VS-NbO@MX复合材料有效抑制了穿梭效应。所制备的Li-S电池比容量显著提高,在0.1C时达到1508 mA h g,在1C下500次循环后容量衰减约为每循环0.027%,在5C时为766.1 mA h g。即使在5.75 mg cm的高硫负载下,电池在100次循环后仍可保持596.6 mA h g的比容量并表现出显著的循环稳定性。密度泛函理论计算表明,VS-NbO@MX异质结构具有5.34 eV的更高结合能和0.68 eV的更低分解势垒能,在加速LiPSs的转化反应方面具有潜在优势。我们的研究为设计具有卓越性能并增强LiPSs电催化转化的金属氧化物-硫化物异质结构催化剂提供了一种直接方法,为高性能Li-S电池开辟了道路。

相似文献

5
Synergistic vanadium carbide/oxide heterostructures within layered carbon for enhanced lithium-sulfur battery performance.
J Colloid Interface Sci. 2025 Sep;693:137646. doi: 10.1016/j.jcis.2025.137646. Epub 2025 Apr 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验