Chen Yuqing, Huang Yongjie, Xu Qing, Yang Liying, Jiang Ningyi, Yin Shougen
Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education) and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China.
Tianjin Key Laboratory of Quantum Optics and Intelligent Photonics, School of Science, Tianjin University of Technology, Tianjin 300384, China.
Mater Horiz. 2024 Dec 9;11(24):6443-6454. doi: 10.1039/d4mh00674g.
To alleviate the shuttle effect in lithium-sulfur (Li-S) batteries, the electrocatalytic conversion of polysulfides serves as a vital strategy. However, achieving a synergy that combines robust adsorption with high catalytic activity continues to pose significant challenges. Herein, a simple solid-state sintering method is employed to transform vanadium-niobium carbide MXene (VNbCT) into a heterogeneous structure of VS-NbO@VNbCT MXene (denoted as VS-NbO@MX). The NbO component immobilizes lithium polysulfides (LiPSs) at the electrode through its strong chemical affinity, while the VS fraction serves as an outstanding electrochemical catalyst, enhancing the reaction kinetics of sulfur precipitation. Furthermore, the VNbCT MXene precursor scaffold is preserved through the conversion and uniformly distributed throughout the composite, exhibiting excellent electrical conductivity. Thanks to the synergistic "capture-adsorption-catalysis" action on LiPSs, the VS-NbO@MX composite effectively restrains the shuttle effect. The as-prepared Li-S battery demonstrates a significant increase in specific capacity, reaching 1508 mA h g at 0.1C and maintaining a capacity decay of approximately 0.027% per cycle after 500 cycles at 1C and 766.1 mA h g at 5C. Even under a high sulfur loading of 5.75 mg cm, the battery can maintain a specific capacity of 596.6 mA h g and exhibit significant cycling stability after 100 cycles. DFT calculations indicate that the VS-NbO@MX heterostructure exhibits a higher binding energy of 5.34 eV and a lower decomposition barrier energy of 0.68 eV, presenting potential advantages in accelerating the conversion reactions of LiPSs. Our research offers a straightforward approach for designing metal oxide-sulfide heterostructured catalysts that deliver superior performance and enhance the electrocatalytic conversion of LiPSs, clearing the path for high performance Li-S batteries.
为缓解锂硫(Li-S)电池中的穿梭效应,多硫化物的电催化转化是一项至关重要的策略。然而,实现将强大吸附与高催化活性相结合的协同作用仍然面临重大挑战。在此,采用一种简单的固态烧结方法将钒铌碳化物MXene(VNbCT)转变为VS-NbO@VNbCT MXene的异质结构(记为VS-NbO@MX)。NbO组分通过其强化学亲和力将多硫化锂(LiPSs)固定在电极上,而VS部分作为出色的电化学催化剂,增强了硫沉淀的反应动力学。此外,VN bCT MXene前驱体支架通过转化得以保留并均匀分布在整个复合材料中,展现出优异的导电性。得益于对LiPSs的协同“捕获-吸附-催化”作用,VS-NbO@MX复合材料有效抑制了穿梭效应。所制备的Li-S电池比容量显著提高,在0.1C时达到1508 mA h g,在1C下500次循环后容量衰减约为每循环0.027%,在5C时为766.1 mA h g。即使在5.75 mg cm的高硫负载下,电池在100次循环后仍可保持596.6 mA h g的比容量并表现出显著的循环稳定性。密度泛函理论计算表明,VS-NbO@MX异质结构具有5.34 eV的更高结合能和0.68 eV的更低分解势垒能,在加速LiPSs的转化反应方面具有潜在优势。我们的研究为设计具有卓越性能并增强LiPSs电催化转化的金属氧化物-硫化物异质结构催化剂提供了一种直接方法,为高性能Li-S电池开辟了道路。