Wang Yuankun, Zhao Yintong, Zhang Shu, Shang Long, Ni Youxuan, Lu Yong, Li Yixin, Yan Zhenhua, Miao Zhiwei, Chen Jun
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China.
Angew Chem Int Ed Engl. 2024 Dec 20;63(52):e202412108. doi: 10.1002/anie.202412108. Epub 2024 Nov 9.
Lithium-ion batteries (LIBs) with conventional carbonate-based electrolytes suffer from safety concerns in large-scale applications. Phosphates feature high flame retardancy but are incompatible with graphite anode due to their inability to form a passivated solid electrolyte interphase (SEI). Herein, we report a monofluorinated co-solvent, diethyl fluoridophosphate (DEFP), featuring a unique P-F bond that allows a trade-off between safety and electrochemical performance in LIBs. The P-F bond in DEFP weakens ion-dipole interactions with Li ions, lowering the desolvation barrier, and simultaneously reduces the lowest unoccupied molecular orbital (LUMO) of DEFP, promoting the formation of a robust and inorganic-rich SEI. Additionally, DEFP exhibits improved thermal stability due to both robust SEI and the inherent flame-retardant properties of the P-F bond. Consequently, the optimized DEFP-based electrolyte exhibits improved cyclability and rate capacity in LiNiCoMnO||graphite full cells compared with triethyl phosphate-based electrolytes and commercial carbonate electrolytes. Even at a low E/C ratio of 3.45 g Ah, the 1.16 Ah NCM811||Gr pouch cells achieve a high capacity retention of 94.2 % after 200 cycles. This work provides a promising approach to decouple phosphate safety and graphite compatibility, paving the way for safer and high-performance lithium-ion batteries.
采用传统碳酸盐基电解质的锂离子电池(LIBs)在大规模应用中存在安全问题。磷酸盐具有高阻燃性,但由于无法形成钝化的固体电解质界面(SEI),与石墨负极不相容。在此,我们报道了一种单氟代共溶剂,二乙基氟代磷酸酯(DEFP),其具有独特的P-F键,能够在锂离子电池的安全性和电化学性能之间进行权衡。DEFP中的P-F键减弱了与锂离子的离子-偶极相互作用,降低了去溶剂化能垒,同时降低了DEFP的最低未占分子轨道(LUMO),促进了坚固且富含无机物的SEI的形成。此外,由于坚固的SEI和P-F键固有的阻燃性能,DEFP表现出 improved热稳定性。因此,与磷酸三乙酯基电解质和商业碳酸盐电解质相比,优化后的基于DEFP的电解质在LiNiCoMnO||石墨全电池中表现出 improved循环性能和倍率容量。即使在低E/C比为3.45 g Ah的情况下,1.16 Ah的NCM811||Gr软包电池在200次循环后仍能保持94.2 %的高容量保持率。这项工作为解开磷酸盐安全性和石墨兼容性之间的关系提供了一种有前景的方法,为更安全、高性能的锂离子电池铺平了道路。