Suppr超能文献

大鼠的运动反映了在一项证据积累任务中的内部决策动态。

Rat movements reflect internal decision dynamics in an evidence accumulation task.

机构信息

Department of Psychological and Brain Sciences and Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States.

Graduate Program for Neuroscience, Boston University, Boston, Massachusetts, United States.

出版信息

J Neurophysiol. 2024 Nov 1;132(5):1608-1620. doi: 10.1152/jn.00181.2024. Epub 2024 Oct 9.

Abstract

Perceptual decision-making involves multiple cognitive processes, including accumulation of sensory evidence, planning, and executing a motor action. How these processes are intertwined is unclear; some models assume that decision-related processes precede motor execution, whereas others propose that movements reflecting ongoing decision processes occur before commitment to a choice. Here we combine two complementary methods to study the relationship between decision processes and the movements leading up to a choice. The first is a free-response pulse-based evidence accumulation task, in which stimuli continue until choice is reported, and the second is a motion-based drift diffusion model (mDDM), in which movement variables from video pose estimation constrain decision parameters on a trial-by-trial basis. We find that the mDDM provides a better fit to rats' decisions in the free-response accumulation task than traditional drift diffusion models. Interestingly, on each trial we observed a period, before choice, that was characterized by head immobility. The length of this period was positively correlated with the rats' decision bounds, and stimuli presented during this period had the greatest impact on choice. Together these results support a model in which internal decision dynamics are reflected in movements and demonstrate that inclusion of movement parameters improves the performance of diffusion-to-bound decision models. In this study we combine a novel pulse-based evidence accumulation task with a newly developed motion-based drift diffusion model (mDDM). In this model, we incorporate movement parameters derived from high-resolution video data to estimate parameters of the model on a trial-by-trial basis. We find that this new model is an improved description of animal choice behavior.

摘要

知觉决策涉及多个认知过程,包括感官证据的积累、计划和执行运动动作。这些过程是如何交织在一起的还不清楚;一些模型假设与决策相关的过程先于运动执行,而另一些模型则提出反映正在进行的决策过程的运动在做出选择之前就已经发生。在这里,我们结合了两种互补的方法来研究决策过程和导致选择的运动之间的关系。第一种是基于自由响应的脉冲式证据积累任务,在这种任务中,刺激会持续到报告选择,第二种是基于运动的漂移扩散模型(mDDM),在这种模型中,来自视频姿态估计的运动变量会根据每个试次的情况约束决策参数。我们发现,mDDM 比传统的漂移扩散模型更能拟合大鼠在自由响应积累任务中的决策。有趣的是,在每次试验中,我们都观察到一个选择前的时期,这个时期的特点是头部静止不动。这个时期的长度与大鼠的决策边界呈正相关,而在这个时期呈现的刺激对选择的影响最大。这些结果共同支持了一种模型,即内部决策动态反映在运动中,并表明包含运动参数可以提高扩散到边界决策模型的性能。在这项研究中,我们将一种新的基于脉冲的证据积累任务与一种新开发的基于运动的漂移扩散模型(mDDM)相结合。在这个模型中,我们结合了来自高分辨率视频数据的运动参数,以便在每个试次的基础上估计模型的参数。我们发现,这个新模型是对动物选择行为的一个改进描述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验