Suppr超能文献

用于三维延迟钆增强磁共振成像的新型自校准无阈值概率性纤维化特征技术

Novel Self-Calibrated Threshold-Free Probabilistic Fibrosis Signature Technique for 3D Late Gadolinium Enhancement MRI.

作者信息

Mehrnia Mehri, Kholmovski Eugene, Katsaggelos Aggelos, Kim Daniel, Passman Rod, Elbaz Mohammed S M

出版信息

IEEE Trans Biomed Eng. 2025 Mar;72(3):856-869. doi: 10.1109/TBME.2024.3476930. Epub 2025 Feb 20.

Abstract

Myocardial fibrosis is a crucial marker of heart muscle injury in several heart disease like myocardial infarction, cardiomyopathies, and atrial fibrillation (AF). Fibrosis and associated scarring (dense fibrosis) are also vital for assessing heart muscle pre- and post-intervention, such as evaluating left atrial (LA) fibrosis/scarring in patients undergoing catheter ablation for AF. Although cardiac MRI is the gold standard for fibrosis assessment, current quantification methods are unreliable due to their reliance on variable thresholding and sensitivity to MRI uncertainties, lacking standardization and reproducibility. Importantly, current methods focus solely on quantifying fibrosis volume ignoring the unique MRI characteristics of fibrosis density and unique distribution, that could better inform on disease severity. To address these issues, we propose a novel threshold-free self-calibrating probabilistic method called "Fibrosis Signatures." This method efficiently encodes ∼9 billion MRI intensity co-disparities per scan into standardized probability density functions, deriving a unique MRI fibrosis signature index (FSI). The FSI index quantitatively encodes fibrosis/scar extent, density, and distribution patterns simultaneously, providing a detailed assessment of burden/severity. Our self-calibrating design mitigates impacts of MRI uncertainties, ensuring robust evaluations pre- and post-intervention under varying MRI qualities. Extensively validated using a novel numerical phantom and 143 in vivo LA 3D MRIs of AF patients (pre- and post- ablation and serial post-ablation scans) and compared to 5 existing methods, our FSI index demonstrated strong correlations with traditional fibrosis measures and was able to quantify density and distribution pattern beyond entropy. FSI was up to 9 times more reliable and reproducible to MRI uncertainties (noise, segmentation, spatial resolution), highlighting its potential to improve cardiac MRI reliability and clinical utility.

摘要

心肌纤维化是多种心脏病(如心肌梗死、心肌病和心房颤动(AF))中心肌损伤的关键标志物。纤维化及相关瘢痕形成(致密纤维化)对于评估心肌干预前后的情况也至关重要,例如评估接受房颤导管消融术患者的左心房(LA)纤维化/瘢痕形成情况。尽管心脏磁共振成像(MRI)是纤维化评估的金标准,但由于当前的量化方法依赖于可变阈值且对MRI不确定性敏感,缺乏标准化和可重复性,因此并不可靠。重要的是,当前方法仅专注于量化纤维化体积,而忽略了纤维化密度和独特分布的独特MRI特征,而这些特征可以更好地反映疾病的严重程度。为了解决这些问题,我们提出了一种名为“纤维化特征”的新型无阈值自校准概率方法。该方法将每次扫描中约90亿个MRI强度协方差有效地编码为标准化概率密度函数,得出独特的MRI纤维化特征指数(FSI)。FSI指数同时定量编码纤维化/瘢痕范围、密度和分布模式,提供对负担/严重程度的详细评估。我们的自校准设计减轻了MRI不确定性的影响,确保在不同MRI质量下对干预前后进行可靠评估。通过使用新型数字体模和143例房颤患者的体内LA 3D MRI(消融前、消融后和消融后系列扫描)进行广泛验证,并与5种现有方法进行比较,我们的FSI指数与传统纤维化测量方法显示出很强的相关性,并且能够量化超出熵的密度和分布模式。FSI对MRI不确定性(噪声、分割、空间分辨率)的可靠性和可重复性提高了9倍,突出了其改善心脏MRI可靠性和临床实用性的潜力。

相似文献

引用本文的文献

2
Current Research in Drug-Free Cancer Therapies.无药癌症治疗的当前研究
Bioengineering (Basel). 2025 Mar 26;12(4):341. doi: 10.3390/bioengineering12040341.

本文引用的文献

5
Atrial fibrillation and atrial cardiomyopathies.心房颤动和心房心肌病。
J Cardiovasc Electrophysiol. 2021 Oct;32(10):2845-2853. doi: 10.1111/jce.15083. Epub 2021 Jul 16.
7
Atrial fibrillation and cardiac fibrosis.心房颤动与心脏纤维化。
Eur Heart J. 2020 Mar 7;41(10):1123-1131. doi: 10.1093/eurheartj/ehz786.
8
Cardiac fibrosis - A short review of causes and therapeutic strategies.心肌纤维化——病因和治疗策略简述。
Adv Drug Deliv Rev. 2019 Jun;146:77-82. doi: 10.1016/j.addr.2019.05.011. Epub 2019 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验