Suppr超能文献

ChartKG:一种基于知识图谱的图表图像表示法。

ChartKG: A Knowledge-Graph-Based Representation for Chart Images.

作者信息

Zhou Zhiguang, Wang Haoxuan, Zhao Zhengqing, Zheng Fengling, Wang Yongheng, Chen Wei, Wang Yong

出版信息

IEEE Trans Vis Comput Graph. 2025 Sep;31(9):5854-5868. doi: 10.1109/TVCG.2024.3476508.

Abstract

Chart images, such as bar charts, pie charts, and line charts, are explosively produced due to the wide usage of data visualizations. Accordingly, knowledge mining from chart images is becoming increasingly important, which can benefit downstream tasks like chart retrieval and knowledge graph completion. However, existing methods for chart knowledge mining mainly focus on converting chart images into raw data and often ignore their visual encodings and semantic meanings, which can result in information loss for many downstream tasks. In this paper, we propose ChartKG, a novel knowledge graph (KG) based representation for chart images, which can model the visual elements in a chart image and semantic relations among them including visual encodings and visual insights in a unified manner. Further, we develop a general framework to convert chart images to the proposed KG-based representation. It integrates a series of image processing techniques to identify visual elements and relations, e.g., CNNs to classify charts, yolov5 and optical character recognition to parse charts, and rule-based methods to construct graphs. We present four cases to illustrate how our knowledge-graph-based representation can model the detailed visual elements and semantic relations in charts, and further demonstrate how our approach can benefit downstream applications such as semantic-aware chart retrieval and chart question answering. We also conduct quantitative evaluations to assess the two fundamental building blocks of our chart-to-KG framework, i.e., object recognition and optical character recognition. The results provide support for the usefulness and effectiveness of ChartKG.

摘要

由于数据可视化的广泛应用,诸如柱状图、饼状图和折线图等图表图像大量产生。因此,从图表图像中进行知识挖掘变得越来越重要,这可以使图表检索和知识图谱补全之类的下游任务受益。然而,现有的图表知识挖掘方法主要集中于将图表图像转换为原始数据,并且常常忽略其视觉编码和语义含义,这可能导致许多下游任务的信息丢失。在本文中,我们提出了ChartKG,一种基于知识图谱(KG)的新颖图表图像表示方法,它可以以统一的方式对图表图像中的视觉元素及其之间的语义关系进行建模,包括视觉编码和视觉洞察。此外,我们开发了一个通用框架,将图表图像转换为所提出的基于KG的表示。它集成了一系列图像处理技术来识别视觉元素和关系,例如使用卷积神经网络(CNNs)对图表进行分类,使用yolov5和光学字符识别来解析图表,以及使用基于规则的方法来构建图。我们给出四个案例来说明我们基于知识图谱的表示如何对图表中的详细视觉元素和语义关系进行建模,并进一步展示我们的方法如何使语义感知图表检索和图表问答等下游应用受益。我们还进行了定量评估,以评估我们的图表到知识图谱框架的两个基本构建块,即目标识别和光学字符识别。结果为ChartKG的实用性和有效性提供了支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验