Biosensors and Devices Lab, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands.
Biointerface Science Group, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600MB Eindhoven, The Netherlands.
ACS Biomater Sci Eng. 2024 Nov 11;10(11):6974-6983. doi: 10.1021/acsbiomaterials.4c01624. Epub 2024 Oct 9.
During the host response toward implanted biomaterials, macrophages can shift phenotypes rapidly upon changes in their microenvironment within the host tissue. Exploration of this phenomenon can benefit significantly from the development of adequate tools. Creating cell microenvironment alterations on classical hydrogel substrates presents challenges, particularly when integrating them with cell cultivation and monitoring processes. However, having the capability to dynamically manipulate the cell microenvironment on biomaterial surfaces holds significant potential. We introduce magnetically actuated hydrogels (Surface) tailored to induce reversible stiffness changes on polyacrylamide hydrogel substrates with embedded magnetic microparticles in a time-controllable manner. Our investigation focused on exploring the potential of magnetic fields and Surfaces in dynamically modulating macrophage behavior in a programmable manner. We achieved a consistent modulation by subjecting the Surface to a pulsed magnetic field with a frequency of 0.1 Hz and a magnetic field flux density of 50 mT and analyzed exposed cells using flow cytometry and ELISA. At the single-cell level, we identified a subpopulation for which the dynamic stiffness conditions in conjunction with the pulsed magnetic field increased the expression of CD206 in M1-activated THP-1 cells, indicating a consistent shift toward the M2 anti-inflammatory phenotype on Surface. At the population level, this effect was mostly hindered in the culture period utilized in this work. The Surface approach advances our understanding of the interplay between magnetic field, cell microenvironment alterations, and macrophage behavior.
在宿主对植入生物材料的反应过程中,巨噬细胞在宿主组织内的微环境发生变化时,其表型可以迅速转变。探索这一现象可以从开发适当的工具中受益匪浅。在经典水凝胶基质上改变细胞微环境会带来挑战,特别是在将其与细胞培养和监测过程相结合时。然而,能够在生物材料表面上动态地操控细胞微环境具有重要的潜力。我们引入了磁驱动水凝胶(Surface),它可以在时间可控的方式下在嵌入磁性微颗粒的聚丙烯酰胺水凝胶基质上诱导可逆的刚度变化。我们的研究重点是探索磁场和 Surface 在以可编程的方式动态调节巨噬细胞行为方面的潜力。我们通过对 Surface 施加频率为 0.1 Hz、磁场通量密度为 50 mT 的脉冲磁场,实现了一致的调制,并通过流式细胞术和 ELISA 对暴露的细胞进行了分析。在单细胞水平上,我们发现了一个亚群,在动态刚度条件下结合脉冲磁场增加了 M1 激活的 THP-1 细胞中 CD206 的表达,表明 Surface 上一致地向 M2 抗炎表型转变。在群体水平上,在本工作中使用的培养周期中,这种效应大多受到阻碍。Surface 方法推进了我们对磁场、细胞微环境改变和巨噬细胞行为之间相互作用的理解。