Suppr超能文献

用于关联分子不同运动状态的超快核磁共振

Ultrafast - NMR for Correlating Different Motional Regimes of Molecules.

作者信息

Tolkkinen Katja, Mankinen Otto, Mailhiot Sarah E, Telkki Ville-Veikko

机构信息

NMR Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, Oulu 90014, Finland.

出版信息

Anal Chem. 2024 Oct 22;96(42):16534-16542. doi: 10.1021/acs.analchem.4c00513. Epub 2024 Oct 9.

Abstract

Nuclear magnetic resonance (NMR) relaxation times provide detailed information about molecular motions and local chemical environments. Longitudinal relaxation time is most often sensitive to relatively fast, nano- to picosecond ranges of molecular motion. Rotating frame relaxation time reflects a much slower, micro- to millisecond range of motion, and the motional regime can be tuned by changing spin-lock field strength. Conventional methods for measuring and relaxation times are time-consuming, since experiments must be repeated many times with incremented magnetization recovery or decay delay. In this work, we introduce two novel and efficient NMR methods to correlate the and relaxation times. The first method, IR-SPICY, combines the conventional inversion recovery (IR) with the single-scan detection-based spin-lock cycle (SPICY). The second method, ultrafast (UF) IR-SPICY, allows measurement of whole two-dimensional - correlation data in a single scan, in a couple of seconds, based on spatial encoding of the dimension. We demonstrate the performance of the methods by studying relaxation of water in porous silica and hydrogel samples, latter acting as a model of the articular cartilage extracellular matrix. The methods allow correlating different molecular motional regimes, potentially providing unprecedented information about various chemical and biochemical systems, such as structures and fluid dynamics in porous materials, macromolecular changes in tissues, and protein dynamics. One to three orders of magnitude shortened experiment time enable the studies of changing or degrading samples. Furthermore, the single-scan approach may significantly facilitate the use of modern nuclear-spin hyperpolarization techniques to enhance the sensitivity of - measurements by several orders of magnitude.

摘要

核磁共振(NMR)弛豫时间提供了有关分子运动和局部化学环境的详细信息。纵向弛豫时间通常对相对较快的、纳秒到皮秒范围内的分子运动最为敏感。旋转坐标系弛豫时间反映了慢得多的、微秒到毫秒范围内的运动,并且可以通过改变自旋锁定场强来调节运动状态。测量T1和T2弛豫时间的传统方法很耗时,因为实验必须多次重复,每次增加磁化恢复或衰减延迟。在这项工作中,我们引入了两种新颖且高效的NMR方法来关联T1和T2弛豫时间。第一种方法,IR-SPICY,将传统的T1反转恢复(IR)与基于单次扫描T2检测的自旋锁定循环(SPICY)相结合。第二种方法,超快(UF)IR-SPICY,基于T2维度的空间编码,能够在单次扫描中、在几秒钟内测量整个二维T1-T2相关数据。我们通过研究多孔二氧化硅和水凝胶样品(后者作为关节软骨细胞外基质的模型)中的水弛豫来证明这些方法的性能。这些方法能够关联不同的分子运动状态,有可能提供关于各种化学和生物化学系统的前所未有的信息,例如多孔材料中的结构和流体动力学、组织中的大分子变化以及蛋白质动力学。实验时间缩短一到三个数量级使得能够研究变化或降解的样品。此外,单次扫描方法可能会显著促进现代核自旋超极化技术的应用,以将T2测量的灵敏度提高几个数量级。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验