Nijs Melanie, Waelkens Etienne, Moor Bart De
STADIUS Center for Dynamical Systems, Signal Processing, and Data Analytics, Department of Electrical Engineering (ESAT), KU Leuven, 3001 Leuven, Belgium.
Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium.
J Am Soc Mass Spectrom. 2024 Dec 4;35(12):2934-2941. doi: 10.1021/jasms.4c00268. Epub 2024 Oct 9.
One of the main challenges in mass spectrometry imaging data analysis remains the analysis of /-spectra displaying a low signal-to-noise ratio caused by their low abundance, sample preparation, matrix effects, fragmentation, and other artifacts. Additionally, we observe that molecules with a high abundance suppress those with lower intensities and misdirect classical tools for MSI data analysis, such as principal component analysis. As a result, the observed significance of a molecule may not always be directly related to its abundance. In this work, we present a recursive rank-2 non-negative matrix factorization (rr2-NMF) algorithm that automatically returns spectral and spatial visualization of colocalized molecules, both highly and lowly abundant. Using this hierarchical decomposition, our method finds spatial and spectral correlations on different levels of abundances. The quality of the analysis is evaluated on MALDI-TOF data of healthy mouse pancreatic tissue for the annotation of molecules of interest in the lower abundances. The results show interesting findings regarding the functioning and colocalization of certain molecules.
质谱成像数据分析中的主要挑战之一仍然是对那些由于丰度低、样品制备、基质效应、碎片化及其他假象而呈现低信噪比的质谱图进行分析。此外,我们观察到高丰度分子会抑制低强度分子,并误导质谱成像数据分析的经典工具,如主成分分析。因此,观察到的分子显著性可能并不总是与其丰度直接相关。在这项工作中,我们提出了一种递归秩2非负矩阵分解(rr2-NMF)算法,该算法能自动返回高丰度和低丰度共定位分子的光谱和空间可视化结果。通过这种分层分解,我们的方法在不同丰度水平上发现了空间和光谱相关性。利用健康小鼠胰腺组织的基质辅助激光解吸电离飞行时间(MALDI-TOF)数据对该分析质量进行评估,以注释低丰度下的感兴趣分子。结果显示了关于某些分子功能和共定位的有趣发现。