Suppr超能文献

用于功能磁共振成像(fMRI)和脑电图(EEG)融合的多模态跨域自监督预训练

Multi-modal cross-domain self-supervised pre-training for fMRI and EEG fusion.

作者信息

Wei Xinxu, Zhao Kanhao, Jiao Yong, Carlisle Nancy B, Xie Hua, Fonzo Gregory A, Zhang Yu

机构信息

Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA.

Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA.

出版信息

Neural Netw. 2025 Apr;184:107066. doi: 10.1016/j.neunet.2024.107066. Epub 2024 Dec 24.

Abstract

Neuroimaging techniques including functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) have shown promise in detecting functional abnormalities in various brain disorders. However, existing studies often focus on a single domain or modality, neglecting the valuable complementary information offered by multiple domains from both fMRI and EEG, which is crucial for a comprehensive representation of disorder pathology. This limitation poses a challenge in effectively leveraging the synergistic information derived from these modalities. To address this, we propose a Multi-modal Cross-domain Self-supervised Pre-training Model (MCSP), a novel approach that leverages self-supervised learning to synergize multi-modal information across spatial, temporal, and spectral domains. Our model employs cross-domain self-supervised loss that bridges domain differences by implementing domain-specific data augmentation and contrastive loss, enhancing feature discrimination. Furthermore, MCSP introduces cross-modal self-supervised loss to capitalize on the complementary information of fMRI and EEG, facilitating knowledge distillation within domains and maximizing cross-modal feature convergence. We constructed a large-scale pre-training dataset and pretrained MCSP model by leveraging proposed self-supervised paradigms to fully harness multimodal neuroimaging data. Through comprehensive experiments, we have demonstrated the superior performance and generalizability of our model on multiple classification tasks. Our study contributes a significant advancement in the fusion of fMRI and EEG, marking a novel integration of cross-domain features, which enriches the existing landscape of neuroimaging research, particularly within the context of mental disorder studies.

摘要

包括功能磁共振成像(fMRI)和脑电图(EEG)在内的神经成像技术在检测各种脑部疾病的功能异常方面已显示出前景。然而,现有研究往往集中在单一领域或模态上,忽略了fMRI和EEG多个领域提供的有价值的互补信息,而这些信息对于全面呈现疾病病理学至关重要。这种局限性给有效利用这些模态产生的协同信息带来了挑战。为了解决这个问题,我们提出了一种多模态跨域自监督预训练模型(MCSP),这是一种新颖的方法,利用自监督学习来整合跨空间、时间和频谱领域的多模态信息。我们的模型采用跨域自监督损失,通过实施特定领域的数据增强和对比损失来弥合领域差异,增强特征辨别力。此外,MCSP引入了跨模态自监督损失,以利用fMRI和EEG的互补信息,促进领域内的知识蒸馏并最大化跨模态特征收敛。我们通过利用提出的自监督范式构建了一个大规模预训练数据集并预训练了MCSP模型,以充分利用多模态神经成像数据。通过全面的实验,我们证明了我们的模型在多个分类任务上的卓越性能和通用性。我们的研究为fMRI和EEG的融合做出了重大进展,标志着跨域特征的一种新颖整合,丰富了现有的神经成像研究领域,特别是在精神障碍研究的背景下。

相似文献

8
A semi-supervised classification RBM with an improved fMRI representation algorithm.一种基于半监督分类 RBM 的改进 fMRI 表示算法。
Comput Methods Programs Biomed. 2022 Jul;222:106960. doi: 10.1016/j.cmpb.2022.106960. Epub 2022 Jun 17.

本文引用的文献

4
Self-Supervised Temporal Graph Learning With Temporal and Structural Intensity Alignment.基于时间和结构强度对齐的自监督时间图学习
IEEE Trans Neural Netw Learn Syst. 2025 Apr;36(4):6355-6367. doi: 10.1109/TNNLS.2024.3386168. Epub 2025 Apr 4.
5
Self-Supervised Contrastive Representation Learning for Semi-Supervised Time-Series Classification.用于半监督时间序列分类的自监督对比表示学习
IEEE Trans Pattern Anal Mach Intell. 2023 Dec;45(12):15604-15618. doi: 10.1109/TPAMI.2023.3308189. Epub 2023 Nov 3.
8
Multimodal Learning With Transformers: A Survey.基于Transformer的多模态学习:一项综述。
IEEE Trans Pattern Anal Mach Intell. 2023 Oct;45(10):12113-12132. doi: 10.1109/TPAMI.2023.3275156. Epub 2023 Sep 5.
10
BrainGB: A Benchmark for Brain Network Analysis With Graph Neural Networks.脑图基准:基于图神经网络的脑网络分析基准
IEEE Trans Med Imaging. 2023 Feb;42(2):493-506. doi: 10.1109/TMI.2022.3218745. Epub 2023 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验