Suppr超能文献

住院医师考试中正确答案的解释性论证抽取。

Explanatory argument extraction of correct answers in resident medical exams.

机构信息

HiTZ Center - Ixa, University of the Basque Country UPV/EHU, Spain.

出版信息

Artif Intell Med. 2024 Nov;157:102985. doi: 10.1016/j.artmed.2024.102985. Epub 2024 Sep 30.

Abstract

Developing technology to assist medical experts in their everyday decision-making is currently a hot topic in the field of Artificial Intelligence (AI). This is specially true within the framework of Evidence-Based Medicine (EBM), where the aim is to facilitate the extraction of relevant information using natural language as a tool for mediating in human-AI interaction. In this context, AI techniques can be beneficial in finding arguments for past decisions in evolution notes or patient journeys, especially when different doctors are involved in a patient's care. In those documents the decision-making process towards treating the patient is reported. Thus, applying Natural Language Processing (NLP) techniques has the potential to assist doctors in extracting arguments for a more comprehensive understanding of the decisions made. This work focuses on the explanatory argument identification step by setting up the task in a Question Answering (QA) scenario in which clinicians ask questions to the AI model to assist them in identifying those arguments. In order to explore the capabilities of current AI-based language models, we present a new dataset which, unlike previous work: (i) includes not only explanatory arguments for the correct hypothesis, but also arguments to reason on the incorrectness of other hypotheses; (ii) the explanations are written originally in Spanish by doctors to reason over cases from the Spanish Residency Medical Exams. Furthermore, this new benchmark allows us to set up a novel extractive task by identifying the explanation written by medical doctors that supports the correct answer within an argumentative text. An additional benefit of our approach lies in its ability to evaluate the extractive performance of language models using automatic metrics, which in the Antidote CasiMedicos dataset corresponds to a 74.47 F1 score. Comprehensive experimentation shows that our novel dataset and approach is an effective technique to help practitioners in identifying relevant evidence-based explanations for medical questions.

摘要

开发能够协助医学专家进行日常决策的技术是目前人工智能领域的热门话题。在循证医学 (EBM) 的框架内尤其如此,其目标是利用自然语言作为人类与人工智能交互的工具来促进相关信息的提取。在这种情况下,人工智能技术可以在病历或患者诊疗记录中寻找过去决策的依据,特别是当不同医生参与患者的治疗时。这些文档记录了治疗患者的决策过程。因此,应用自然语言处理 (NLP) 技术有潜力协助医生提取论据,以更全面地了解所做的决策。这项工作专注于解释性论据识别步骤,通过在问答 (QA) 场景中设置任务,让临床医生向人工智能模型提问,以协助他们识别这些论据。为了探索当前基于人工智能的语言模型的能力,我们提出了一个新的数据集,与之前的工作不同:(i)它不仅包含了正确假设的解释性论据,还包含了对其他假设错误性进行推理的论据;(ii)解释是由医生用西班牙语编写的,用于推理西班牙住院医师考试中的病例。此外,这个新的基准允许我们通过识别支持论证文本中正确答案的医生所写的解释来设置新的提取任务。我们的方法的另一个好处在于它能够使用自动指标评估语言模型的提取性能,在 Antidote CasiMedicos 数据集,对应于 74.47 的 F1 分数。全面的实验表明,我们的新数据集和方法是帮助从业者识别医学问题相关循证解释的有效技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验