Suppr超能文献

探索基于 CBCT 的自适应放疗和质子治疗中的双能 CT 合成:去噪扩散概率模型的应用。

Exploring dual energy CT synthesis in CBCT-based adaptive radiotherapy and proton therapy: application of denoising diffusion probabilistic models.

机构信息

Department of Radiation Oncology, Emory University, Atlanta, GA, United States of America.

Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain.

出版信息

Phys Med Biol. 2024 Oct 18;69(21). doi: 10.1088/1361-6560/ad8547.

Abstract

Adaptive radiotherapy (ART) requires precise tissue characterization to optimize treatment plans and enhance the efficacy of radiation delivery while minimizing exposure to organs at risk. Traditional imaging techniques such as cone beam computed tomography (CBCT) used in ART settings often lack the resolution and detail necessary for accurate dosimetry, especially in proton therapy.This study aims to enhance ART by introducing an innovative approach that synthesizes dual-energy computed tomography (DECT) images from CBCT scans using a novel 3D conditional denoising diffusion probabilistic model (DDPM) multi-decoder. This method seeks to improve dose calculations in ART planning, enhancing tissue characterization.We utilized a paired CBCT-DECT dataset from 54 head and neck cancer patients to train and validate our DDPM model. The model employs a multi-decoder Swin-UNET architecture that synthesizes high-resolution DECT images by progressively reducing noise and artifacts in CBCT scans through a controlled diffusion process.The proposed method demonstrated superior performance in synthesizing DECT images (High DECT MAE 39.582 ± 0.855 and Low DECT MAE 48.540± 1.833) with significantly enhanced signal-to-noise ratio and reduced artifacts compared to traditional GAN-based methods. It showed marked improvements in tissue characterization and anatomical structure similarity, critical for precise proton and radiation therapy planning.This research has opened a new avenue in CBCT-CT synthesis for ART/APT by generating DECT images using an enhanced DDPM approach. The demonstrated similarity between the synthesized DECT images and ground truth images suggests that these synthetic volumes can be used for accurate dose calculations, leading to better adaptation in treatment planning.

摘要

自适应放疗(ART)需要精确的组织特征描述,以优化治疗计划,提高放射治疗的效果,同时最大限度地减少对危险器官的辐射暴露。传统的成像技术,如在 ART 环境中使用的锥形束计算机断层扫描(CBCT),通常缺乏精确剂量计算所需的分辨率和细节,特别是在质子治疗中。本研究旨在通过引入一种创新方法来增强 ART,该方法使用一种新颖的 3D 条件去噪扩散概率模型(DDPM)多解码器,从 CBCT 扫描中合成双能 CT(DECT)图像。该方法旨在改进 ART 计划中的剂量计算,增强组织特征描述。我们利用来自 54 名头颈部癌症患者的配对 CBCT-DECT 数据集来训练和验证我们的 DDPM 模型。该模型采用多解码器 Swin-UNET 架构,通过在 CBCT 扫描中通过受控的扩散过程逐步降低噪声和伪影,合成高分辨率的 DECT 图像。与传统的基于 GAN 的方法相比,所提出的方法在合成 DECT 图像方面表现出卓越的性能(高 DECT MAE 为 39.582±0.855,低 DECT MAE 为 48.540±1.833),具有显著提高的信噪比和降低的伪影。它在组织特征描述和解剖结构相似性方面表现出显著的改善,这对于精确的质子和放射治疗计划至关重要。本研究通过使用增强的 DDPM 方法生成 DECT 图像,为 ART/APT 中的 CBCT-CT 合成开辟了新途径。合成的 DECT 图像与真实图像之间的相似性表明,这些合成容积可用于精确的剂量计算,从而在治疗计划中更好地适应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验