Suppr超能文献

基于 CT 的合成对比增强双能 CT 生成采用条件去噪扩散概率模型。

CT-based synthetic contrast-enhanced dual-energy CT generation using conditional denoising diffusion probabilistic model.

机构信息

Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America.

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America.

出版信息

Phys Med Biol. 2024 Aug 2;69(16):165015. doi: 10.1088/1361-6560/ad67a1.

Abstract

The study aimed to generate synthetic contrast-enhanced Dual-energy CT (CE-DECT) images from non-contrast single-energy CT (SECT) scans, addressing the limitations posed by the scarcity of DECT scanners and the health risks associated with iodinated contrast agents, particularly for high-risk patients.A conditional denoising diffusion probabilistic model (C-DDPM) was utilized to create synthetic images. Imaging data were collected from 130 head-and-neck (HN) cancer patients who had undergone both non-contrast SECT and CE-DECT scans.The performance of the C-DDPM was evaluated using Mean Absolute Error (MAE), Structural Similarity Index (SSIM), and Peak Signal-to-Noise Ratio (PSNR). The results showed MAE values of 27.37±3.35 Hounsfield Units (HU) for high-energy CT (H-CT) and 24.57±3.35HU for low-energy CT (L-CT), SSIM values of 0.74±0.22 for H-CT and 0.78±0.22 for L-CT, and PSNR values of 18.51±4.55 decibels (dB) for H-CT and 18.91±4.55 dB for L-CT.The study demonstrates the efficacy of the deep learning model in producing high-quality synthetic CE-DECT images, which significantly benefits radiation therapy planning. This approach provides a valuable alternative imaging solution for facilities lacking DECT scanners and for patients who are unsuitable for iodine contrast imaging, thereby enhancing the reach and effectiveness of advanced imaging in cancer treatment planning.

摘要

本研究旨在从非对比单能 CT(SECT)扫描生成合成对比增强双能 CT(CE-DECT)图像,解决 DECT 扫描仪稀缺和碘造影剂相关健康风险的问题,特别是对高危患者。采用条件去噪扩散概率模型(C-DDPM)生成合成图像。从 130 名头颈部(HN)癌症患者采集成像数据,这些患者均进行了非对比 SECT 和 CE-DECT 扫描。使用平均绝对误差(MAE)、结构相似性指数(SSIM)和峰值信噪比(PSNR)评估 C-DDPM 的性能。结果显示高能 CT(H-CT)的 MAE 值为 27.37±3.35 亨斯菲尔德单位(HU),低能 CT(L-CT)的 MAE 值为 24.57±3.35HU;H-CT 的 SSIM 值为 0.74±0.22,L-CT 的 SSIM 值为 0.78±0.22;H-CT 的 PSNR 值为 18.51±4.55 分贝(dB),L-CT 的 PSNR 值为 18.91±4.55dB。研究表明,深度学习模型在生成高质量合成 CE-DECT 图像方面具有良好的效果,这对放射治疗计划具有显著的益处。这种方法为缺乏 DECT 扫描仪的机构和不适合碘造影成像的患者提供了有价值的替代成像解决方案,从而增强了高级成像在癌症治疗计划中的应用范围和效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a95/11294926/1ee165273cd9/pmbad67a1f1_lr.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验