Department of Pharmacy, University of Oslo. Sem Sælands vei 3, 0371 Oslo, Norway; Nacamed AS. Oslo Science Park, Gaustadalléen 21, 0349 Oslo, Norway.
Nacamed AS. Oslo Science Park, Gaustadalléen 21, 0349 Oslo, Norway.
Int J Pharm. 2024 Dec 5;666:124809. doi: 10.1016/j.ijpharm.2024.124809. Epub 2024 Oct 9.
Development of novel active pharmaceutical ingredients (API) for oral use often face challenges due to low bioavailability. Nanoparticle-based drug delivery systems and cyclodextrin (CD) encapsulation offer promising solutions by enhancing API solubility or dissolution rates. Porous silicon nanoparticles have shown potential to encapsulate APIs in their amorphous form within the pores, improving their dissolution rates compared to crystalline counterparts. A novel synthesis approach, circumventing the expensive and tedious synthesis from Si wafer material, has been developed using centrifugal Chemical Vapor Deposition (cCVD). Herein, various cCVD Si particles were evaluated for their ability to enhance the dissolution rate of the model drugs celecoxib (CEL), phenytoin (PHT), griseofulvin (GRI), diclofenac (DCF) and naproxen (NAP). Our findings demonstrate increased dissolution rates of all tested APIs when formulated with cCVD Si particles, compared to free API in pH 7.4 or pH 2.0. Particle characteristics were largely retained after loading, and the solid state of the loaded APIs were evaluated using Differential Scanning Calorimetry (DSC). Dissolution kinetics were influenced by the particle properties, mass loading and API characteristics. Loading of CD-CEL, -GRI and -DCF complexes into the cCVD Si particles showed a potential for further enhanced dissolution rates, representing the first reported investigation of this combination. In conclusion, the cCVD Si particles are promising for improving the dissolution rate of poorly soluble drugs, potentially due to precipitation of amorphous or metastable forms. Further enhancements were observed upon loading CD-drug complexes, thereby offering promising strategies for optimizing drug bioavailability.
新型口服用活性药物成分 (API) 的开发常常面临生物利用度低的挑战。基于纳米粒子的药物传递系统和环糊精 (CD) 包封提供了有前途的解决方案,可通过提高 API 的溶解度或溶解速率来实现。多孔硅纳米粒子已显示出将 API 以无定形形式封装在孔内的潜力,与晶型相比,可提高其溶解速率。已经开发了一种新颖的合成方法,该方法避开了从 Si 晶片材料进行昂贵且繁琐的合成,使用离心化学气相沉积 (cCVD) 进行。在此,评估了各种 cCVD Si 粒子增强模型药物塞来昔布 (CEL)、苯妥英 (PHT)、灰黄霉素 (GRI)、双氯芬酸 (DCF) 和萘普生 (NAP) 的溶解速率的能力。与在 pH 7.4 或 pH 2.0 下的游离 API 相比,当用 cCVD Si 粒子配方时,所有测试的 API 的溶解速率都有所提高。负载后,粒子特性基本保持不变,并使用差示扫描量热法 (DSC) 评估了负载 API 的固态。溶解动力学受到粒子特性、质量负载和 API 特性的影响。将 CD-CEL、-GRI 和 -DCF 复合物加载到 cCVD Si 粒子中显示出进一步提高溶解速率的潜力,这代表了对此类组合的首次报道研究。总之,cCVD Si 粒子有望提高难溶性药物的溶解速率,这可能是由于无定形或亚稳形式的沉淀所致。在负载 CD-药物复合物后观察到进一步的增强,从而为优化药物生物利用度提供了有前途的策略。