Synthesis and Solid State Pharmaceutical Centre, Department of Chemical Sciences, The Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
Colloids Surf B Biointerfaces. 2020 Sep;193:111120. doi: 10.1016/j.colsurfb.2020.111120. Epub 2020 May 12.
Nanoparticles (NPs) of three poorly water-soluble BCS class II active pharmaceutical ingredients (APIs) (clozapine (CLO), curcumin (CUR) and carbamazepine (CBMZ) with zeta potentials -28.5 ± 2.5, -33 ± 1.5 and -13 ± 1.5 mV respectively) were produced, stabilized and isolated into the solid state with the help of Montmorillonite (MMT) clay carrier particles. The nanoparticles of clozapine (27 nm), curcumin (170 nm) and carbamazepine (30 nm) were produced and stabilized in suspension using a reverse antisolvent precipitation technique in the presence of 'as received' MMT carrier particles (∼30 μm) and/or MMT carrier particles whose surface had been slightly modified with a cationic protein, protamine sulphate salt (PA). The resulting nanoparticle carrier composites were isolated directly from suspension into a solid state form by simple filtration followed by air-drying. The API dissolution rates from these dried NP-carrier composites were comparable with those of the respective stabilized API nanoparticles in suspension up to maximum CLO, CUR and CBMZ loadings of 23%, 21.8% and 33.3% (w/w) respectively, although surface modification of the MMT carrier particles with PA was needed for the CLO and CUR NP-carrier composites in order to preserve the fast API nanosuspension-like dissolution rates at higher API loadings. For both of these APIs, the optimal loading of PA on MMT was around 4 mg/g, which likely helped to limit aggregation of the API nanoparticles at the higher API loadings. Interestingly, no MMT surface modification was needed to preserve fast API dissolution rates at higher API loadings in the case of the CBMZ NP-carrier composites. This discrimination among the three APIs for carrier particle surface modification was previously observed in reported studies by our group for three other APIs, namely valsartan, fenofibrate and dalcetrapib. When examined together, the data for all six APIs suggest a general trend whereby API nanoparticles with zeta potentials more positive than around -25 mV do not require carrier particle surface modification with PA in order to preserve their fast dissolution rates from NP-carrier composites at higher API loadings. Thus, this study offers a potentially effective means of transforming poorly water soluble BCS Class II APIs into fast dissolving solid dosage NP-carrier composites, whereby the surface properties of the carrier particle can be tuned with prior knowledge of the zeta potential of the API nanoparticles.
生产了三种水难溶性 BCS 类 II 活性药物成分 (API)(氯氮平 (CLO)、姜黄素 (CUR) 和卡马西平 (CBMZ)的纳米粒子,它们的 Zeta 电位分别为-28.5±2.5mV、-33±1.5mV 和-13±1.5mV),并借助蒙脱土 (MMT) 粘土载体颗粒将其稳定并分离至固态。使用反溶剂沉淀技术,在“原样”MMT 载体颗粒(约 30μm)和/或表面用阳离子蛋白鱼精蛋白硫酸盐(PA)轻微修饰的 MMT 载体颗粒的存在下,制备并稳定了氯氮平(27nm)、姜黄素(170nm)和卡马西平(30nm)的纳米粒子。通过简单过滤和空气干燥,直接将所得纳米颗粒载体复合材料从悬浮液中分离成固态形式。这些干燥的 NP 载体复合材料中 API 的溶解速率与相应的稳定 API 纳米悬浮液中的溶解速率相当,最高可达 CLO、CUR 和 CBMZ 负载分别为 23%、21.8%和 33.3%(w/w),尽管需要用 PA 对 MMT 载体颗粒进行表面修饰,以在更高的 API 负载下保持 CLO 和 CUR NP 载体复合材料中快速的 API 纳米悬浮液样溶解速率。对于这两种 API,PA 在 MMT 上的最佳负载约为 4mg/g,这可能有助于限制较高 API 负载下 API 纳米颗粒的聚集。有趣的是,在 CBMZ NP 载体复合材料中,不需要对 MMT 进行表面修饰即可在较高的 API 负载下保持快速的 API 溶解速率。在我们小组之前对另外三种 API(缬沙坦、非诺贝特和达塞曲匹)的报告研究中观察到了这种对三种 API 的载体颗粒表面修饰的区分。当一起检查时,所有六种 API 的数据表明了一种普遍趋势,即 Zeta 电位大于约-25mV 的 API 纳米颗粒不需要用 PA 对载体颗粒表面进行修饰,以在较高的 API 负载下保持其从 NP 载体复合材料中的快速溶解速率。因此,这项研究提供了一种将水难溶性 BCS 类 II API 转化为快速溶解的固体剂量 NP 载体复合材料的有效方法,其中载体颗粒的表面特性可以根据 API 纳米颗粒的 Zeta 电位预先了解进行调整。