Beneken J E, Gravenstein N, Gravenstein J S, van der Aa J J, Lampotang S
J Clin Monit. 1985 Apr;1(2):103-13. doi: 10.1007/BF02832197.
The Mapleson D anesthesia breathing system has no valves and allows rebreathing of carbon dioxide. Its coaxial version is known as the Bain system. The interpretation of capnograms obtained during its use requires an understanding of the interrelationships of patient and system variables. Toward that end, a systematic description of mechanical ventilation with the Bain circuit was undertaken based on the physical laws of gas transport. The mathematical formulation of the model contains the relations between pressure, flow, and volume in the tube, alveolar space, and ventilator. The flows, calculated from these relations, are used to determine the CO2 concentrations in the different parts of the model. Two sets of data are used--patient and system. The patient data, used to solve the equations numerically, are lung-thorax compliance, CO2 inflow into alveolar space (CO2 production), functional residual capacity, dead space volume, airway resistance, and respiratory quotient. The ventilation system data comprise the dimensions and volumes of the Bain circuit, ventilator, connectors, and tubes; spill valve pressure; resistances to flow in the individual tube parts; ventilator settings; and fresh-gas flow rates. After incorporation of a volunteer's respiratory variables into the model, capnograms obtained from the model compared well with those obtained from the volunteer. The structure of the model is such that it permits easy introduction or changes of patient and system variables to obtain individual results or model specific circumstances. This flexibility makes it a useful tool for understanding the properties of the Bain circuit under a variety of clinical circumstances. The results may be displayed in a number of different ways.
梅普乐逊D型麻醉呼吸系统没有阀门,允许二氧化碳再吸入。其同轴版本被称为贝恩系统。在使用该系统期间获得的二氧化碳波形图的解读需要了解患者和系统变量之间的相互关系。为此,基于气体传输的物理定律,对使用贝恩回路进行机械通气进行了系统描述。该模型的数学公式包含了管道、肺泡空间和呼吸机中压力、流量和容积之间的关系。根据这些关系计算出的流量用于确定模型不同部分的二氧化碳浓度。使用两组数据——患者数据和系统数据。用于数值求解方程的患者数据包括肺胸顺应性、进入肺泡空间的二氧化碳流量(二氧化碳产生量)、功能残气量、死腔容积、气道阻力和呼吸商。通气系统数据包括贝恩回路、呼吸机、连接器和管道的尺寸和容积;溢流阀压力;各个管道部分的流动阻力;呼吸机设置;以及新鲜气体流速。将一名志愿者的呼吸变量纳入模型后,从模型中获得的二氧化碳波形图与从志愿者身上获得的波形图进行了很好的比较。该模型的结构使其能够轻松引入或改变患者和系统变量,以获得个体结果或模拟特定情况。这种灵活性使其成为理解各种临床情况下贝恩回路特性的有用工具。结果可以用多种不同方式显示。