Suppr超能文献

将卡尔曼滤波器噪声残差集成到U-Net中以实现稳健图像去噪:KU-Net模型。

Integrating Kalman filter noise residue into U-Net for robust image denoising: the KU-Net model.

作者信息

Soniya S, Sriharipriya K C

机构信息

School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamilnadu, 632014, India.

出版信息

Sci Rep. 2024 Oct 9;14(1):23641. doi: 10.1038/s41598-024-74777-8.

Abstract

In low-level image processing, where the main goal is to reconstruct a clean image from a noise-corrupted version, image denoising continues to be a critical challenge. Although recent developments have led to the introduction of complex architectures to improve denoising performance, these models frequently have more parameters and higher computational demands. Here, we propose a new, simplified architecture called KU-Net, which is intended to achieve better denoising performance while requiring less complexity. KU-Net is an extension of the basic U-Net architecture that incorporates gradient information and noise residue from a Kalman filter. The network's ability to learn is improved by this deliberate incorporation, which also helps it better preserve minute details in the denoised images. Without using Image augmentation, the proposed model is trained on a limited dataset to show its resilience in restricted training settings. Three essential inputs are processed by the architecture: gradient estimations, the predicted noisy image, and the original noisy grey image. These inputs work together to steer the U-Net's encoding and decoding stages to generate high-quality denoised outputs. According to our experimental results, KU-Net performs better than traditional models, as demonstrated by its superiority on common metrics like the Structural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR). KU-Net notably attains a PSNR of 26.60 dB at a noise level of 50, highlighting its efficacy and potential for more widespread use in image denoising.

摘要

在低级图像处理中,主要目标是从受噪声干扰的版本重建清晰图像,图像去噪仍然是一项关键挑战。尽管最近的进展带来了复杂架构的引入以提高去噪性能,但这些模型通常具有更多参数和更高的计算需求。在此,我们提出一种名为KU-Net的新型简化架构,旨在在降低复杂度的同时实现更好的去噪性能。KU-Net是基本U-Net架构的扩展,它整合了来自卡尔曼滤波器的梯度信息和噪声残差。这种有意的整合提高了网络的学习能力,也有助于它在去噪图像中更好地保留细微细节。在不使用图像增强的情况下,所提出的模型在有限数据集上进行训练,以展示其在受限训练设置下的弹性。该架构处理三个重要输入:梯度估计、预测的噪声图像和原始噪声灰度图像。这些输入共同引导U-Net的编码和解码阶段,以生成高质量的去噪输出。根据我们的实验结果,KU-Net的性能优于传统模型,这在结构相似性指数(SSIM)和峰值信噪比(PSNR)等常见指标上的优越性得到了证明。在50的噪声水平下,KU-Net显著达到了26.60 dB的PSNR,突出了其在图像去噪中更广泛应用的有效性和潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bd0/11464703/c9499d5c91fb/41598_2024_74777_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验