Suppr超能文献

通过迁移学习加速 CT 图像中的肌肉质量估计。

Accelerated muscle mass estimation from CT images through transfer learning.

机构信息

Department of Computer Science & Engineering (Major in Bio Artificial Intelligence), Hanyang University at Ansan, 55, Hanyangdaehak-ro, Sangnok-gu, 15588, Ansan-si, Gyeonggi-do, Republic of Korea.

Division of Gastroenterology and Hepatology, Hallym University Sacred Heart Hospital, 22, Gwanpyeong-ro 170beon-gil, Dongan-gu, 14068, Anyang-si, Gyeonggi-do, Republic of Korea.

出版信息

BMC Med Imaging. 2024 Oct 9;24(1):271. doi: 10.1186/s12880-024-01449-4.

Abstract

BACKGROUND

The cost of labeling to collect training data sets using deep learning is especially high in medical applications compared to other fields. Furthermore, due to variances in images depending on the computed tomography (CT) devices, a deep learning based segmentation model trained with a certain device often does not work with images from a different device.

METHODS

In this study, we propose an efficient learning strategy for deep learning models in medical image segmentation. We aim to overcome the difficulties of segmentation in CT images by training a VNet segmentation model which enables rapid labeling of organs in CT images with the model obtained by transfer learning using a small number of manually labeled images, called SEED images. We established a process for generating SEED images and conducting transfer learning a model. We evaluate the performance of various segmentation models such as vanilla UNet, UNETR, Swin-UNETR and VNet. Furthermore, assuming a scenario that a model is repeatedly trained with CT images collected from multiple devices, in which is catastrophic forgetting often occurs, we examine if the performance of our model degrades.

RESULTS

We show that transfer learning can train a model that does a good job of segmenting muscles with a small number of images. In addition, it was confirmed that VNet shows better performance when comparing the performance of existing semi-automated segmentation tools and other deep learning networks to muscle and liver segmentation tasks. Additionally, we confirmed that VNet is the most robust model to deal with catastrophic forgetting problems.

CONCLUSION

In the 2D CT image segmentation task, we confirmed that the CNN-based network shows better performance than the existing semi-automatic segmentation tool or latest transformer-based networks.

摘要

背景

与其他领域相比,在医学应用中,使用深度学习进行标注以收集训练数据集的成本尤其高。此外,由于计算机断层扫描(CT)设备的图像差异,使用特定设备训练的基于深度学习的分割模型通常无法与来自不同设备的图像配合使用。

方法

在这项研究中,我们提出了一种用于医学图像分割的深度学习模型的有效学习策略。我们旨在通过训练 VNet 分割模型来克服 CT 图像分割的困难,该模型可以通过使用少量手动标注图像(称为 SEED 图像)进行的迁移学习,快速标注 CT 图像中的器官。我们建立了生成 SEED 图像和进行迁移学习模型的流程。我们评估了各种分割模型的性能,如 vanilla UNet、UNETR、Swin-UNETR 和 VNet。此外,假设模型反复使用来自多个设备收集的 CT 图像进行训练,其中经常发生灾难性遗忘,我们检查我们的模型的性能是否会下降。

结果

我们表明,迁移学习可以使用少量图像训练出一个能够很好地分割肌肉的模型。此外,在比较肌肉和肝脏分割任务时,我们确认 VNet 显示出比现有的半自动分割工具和其他深度学习网络更好的性能。此外,我们确认 VNet 是处理灾难性遗忘问题最稳健的模型。

结论

在 2D CT 图像分割任务中,我们确认基于 CNN 的网络比现有的半自动分割工具或最新的基于转换器的网络表现更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fab/11465928/f09b9b300451/12880_2024_1449_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验