肝脏肿瘤分割基准(LiTS)。
The Liver Tumor Segmentation Benchmark (LiTS).
机构信息
Department of Informatics, Technical University of Munich, Germany.
Department of Informatics, Technical University of Munich, Germany; Department of Quantitative Biomedicine, University of Zurich, Switzerland.
出版信息
Med Image Anal. 2023 Feb;84:102680. doi: 10.1016/j.media.2022.102680. Epub 2022 Nov 17.
In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the International Conferences on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2017 and 2018. The image dataset is diverse and contains primary and secondary tumors with varied sizes and appearances with various lesion-to-background levels (hyper-/hypo-dense), created in collaboration with seven hospitals and research institutions. Seventy-five submitted liver and liver tumor segmentation algorithms were trained on a set of 131 computed tomography (CT) volumes and were tested on 70 unseen test images acquired from different patients. We found that not a single algorithm performed best for both liver and liver tumors in the three events. The best liver segmentation algorithm achieved a Dice score of 0.963, whereas, for tumor segmentation, the best algorithms achieved Dices scores of 0.674 (ISBI 2017), 0.702 (MICCAI 2017), and 0.739 (MICCAI 2018). Retrospectively, we performed additional analysis on liver tumor detection and revealed that not all top-performing segmentation algorithms worked well for tumor detection. The best liver tumor detection method achieved a lesion-wise recall of 0.458 (ISBI 2017), 0.515 (MICCAI 2017), and 0.554 (MICCAI 2018), indicating the need for further research. LiTS remains an active benchmark and resource for research, e.g., contributing the liver-related segmentation tasks in http://medicaldecathlon.com/. In addition, both data and online evaluation are accessible via https://competitions.codalab.org/competitions/17094.
在这项工作中,我们报告了肝肿瘤分割基准(LiTS)的设置和结果,该基准是与 2017 年 IEEE 国际生物医学成像研讨会(ISBI)以及 2017 年和 2018 年国际医学图像计算和计算机辅助干预会议(MICCAI)联合组织的。该图像数据集具有多样性,包含具有不同大小和外观的原发性和继发性肿瘤,以及各种病变与背景的水平(高/低密度),由七个医院和研究机构合作创建。七十五种提交的肝和肝肿瘤分割算法在一组 131 个计算机断层扫描(CT)容积上进行了训练,并在从不同患者获得的 70 个未见过的测试图像上进行了测试。我们发现,在这三个事件中,没有一个算法对肝和肝肿瘤都表现最好。最佳的肝分割算法的 Dice 分数为 0.963,而对于肿瘤分割,最佳算法的 Dice 分数为 0.674(ISBI 2017)、0.702(MICCAI 2017)和 0.739(MICCAI 2018)。回顾性地,我们对肝肿瘤检测进行了额外的分析,发现并非所有表现最好的分割算法都能很好地用于肿瘤检测。最佳的肝肿瘤检测方法的病变召回率为 0.458(ISBI 2017)、0.515(MICCAI 2017)和 0.554(MICCAI 2018),这表明需要进一步研究。LiTS 仍然是一个活跃的基准和研究资源,例如,在 http://medicaldecathlon.com/ 中贡献了与肝脏相关的分割任务。此外,数据和在线评估都可以通过 https://competitions.codalab.org/competitions/17094 访问。