Suppr超能文献

一种自愈合、可流动但固态的电解质可抑制锂金属的形态不稳定性。

A Self-Healing, Flowable, Yet Solid Electrolyte Suppresses Li-Metal Morphological Instabilities.

作者信息

He Yubin, Wang Chunyang, Lin Ruoqian, Hu Enyuan, Trask Stephen E, Li Ju, Xin Huolin L

机构信息

Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA.

Department of Mechanical Engineering, University of California, Riverside, 92521, CA.

出版信息

Adv Mater. 2024 Dec;36(49):e2406315. doi: 10.1002/adma.202406315. Epub 2024 Oct 10.

Abstract

Lithium metal (Li) solid-state batteries encounter implementation challenges due to dendrite formation, side reactions, and movement of the electrode-electrolyte interface in cycling. Notably, voids and cracks formed during battery fabrication/operation are hot spots for failure. Here, a self-healing, flowable yet solid electrolyte composed of mobile ceramic crystals embedded in a reconfigurable polymer network is reported. This electrolyte can auto-repair voids and cracks through a two-step self-healing process that occurs at a fast rate of 5.6 µm h. A dynamical phase diagram is generated, showing the material can switch between liquid and solid forms in response to external strain rates. The flowability of the electrolyte allows it to accommodate the electrode volume change during Li stripping. Simultaneously, the electrolyte maintains a solid form with high tensile strength (0.28 MPa), facilitating the regulation of mossy Li deposition. The chemistries and kinetics are studied by operando synchrotron X-ray and in situ transmission electron microscopy (TEM). Solid-state NMR reveals a dual-phase ion conduction pathway and rapid Li diffusion through the stable polymer-ceramic interphase. This designed electrolyte exhibits extended cycling life in Li-Li cells, reaching 12 000 h at 0.2 mA cm and 5000 h at 0.5 mA cm. Furthermore, owing to its high critical current density of 9 mA cm, the Li-LiNiMnCoO (NMC811) full cell demonstrates stable cycling at 5 mA cm for 1100 cycles, retaining 88% of its capacity, even under near-zero stack pressure conditions.

摘要

锂金属(Li)固态电池在循环过程中会因枝晶形成、副反应以及电极-电解质界面移动而面临实施挑战。值得注意的是,在电池制造/运行过程中形成的空隙和裂纹是失效的热点。在此,报道了一种由嵌入可重构聚合物网络中的可移动陶瓷晶体组成的自修复、可流动但为固态的电解质。这种电解质可通过两步自修复过程自动修复空隙和裂纹,该过程以5.6微米/小时的快速速率发生。生成了一个动态相图,表明该材料可响应外部应变率在液态和固态形式之间切换。电解质的流动性使其能够适应锂剥离过程中电极的体积变化。同时,电解质保持具有高拉伸强度(0.28兆帕)的固态形式,有助于调节苔藓状锂的沉积。通过原位同步加速器X射线和原位透射电子显微镜(TEM)研究了其化学性质和动力学。固态核磁共振揭示了双相离子传导途径以及锂通过稳定的聚合物-陶瓷界面的快速扩散。这种设计的电解质在锂-锂电池中展现出延长的循环寿命,在0.2毫安/平方厘米时达到12000小时,在0.5毫安/平方厘米时达到5000小时。此外,由于其9毫安/平方厘米的高临界电流密度,锂-锂镍锰钴氧化物(NMC811)全电池在5毫安/平方厘米下可稳定循环1100次,即使在接近零堆叠压力条件下仍保留其容量的88%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验