Suppr超能文献

全固态锂电池的界面设计。

Interface design for all-solid-state lithium batteries.

机构信息

Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA.

Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA.

出版信息

Nature. 2023 Nov;623(7988):739-744. doi: 10.1038/s41586-023-06653-w. Epub 2023 Oct 25.

Abstract

The operation of high-energy all-solid-state lithium-metal batteries at low stack pressure is challenging owing to the Li dendrite growth at the Li anodes and the high interfacial resistance at the cathodes. Here we design a MgBi interlayer at the Li/LiPSCl interface to suppress the Li dendrite growth, and a F-rich interlayer on LiNiMnCoO (NMC811) cathodes to reduce the interfacial resistance. During Li plating-stripping cycles, Mg migrates from the MgBi interlayer to the Li anode converting MgBi into a multifunctional LiMgS-LiBi-LiMg structure with the layers functioning as a solid electrolyte interphase, a porous LiBi sublayer and a solid binder (welding porous LiBi onto the Li anode), respectively. The LiBi sublayer with its high ionic/electronic conductivity ratio allows Li to deposit only on the Li anode surface and grow into the porous LiBi sublayer, which ameliorates pressure (stress) changes. The NMC811 with the F-rich interlayer converts into F-doped NMC811 cathodes owing to the electrochemical migration of the F anion into the NMC811 at a high potential of 4.3 V stabilizing the cathodes. The anode and cathode interlayer designs enable the NMC811/LiPSCl/Li cell to achieve a capacity of 7.2 mAh cm at 2.55 mA cm, and the LiNiO/LiPSCl/Li cell to achieve a capacity of 11.1 mAh cm with a cell-level energy density of 310 Wh kg at a low stack pressure of 2.5 MPa. The MgBi anode interlayer and F-rich cathode interlayer provide a general solution for all-solid-state lithium-metal batteries to achieve high energy and fast charging capability at low stack pressure.

摘要

在低堆叠压力下操作高能量全固态锂金属电池具有挑战性,因为在 Li 阳极处会发生 Li 枝晶生长,而在阴极处会有高界面电阻。在这里,我们在 Li/LiPSCl 界面设计了 MgBi 中间层来抑制 Li 枝晶生长,并在 LiNiMnCoO (NMC811) 阴极上设计了富 F 中间层来降低界面电阻。在 Li 电镀-剥离循环过程中,Mg 从 MgBi 中间层迁移到 Li 阳极,将 MgBi 转化为具有多层功能的 LiMgS-LiBi-LiMg 结构,这些层分别作为固体电解质界面、多孔 LiBi 亚层和固体粘结剂(将多孔 LiBi 焊接到 Li 阳极上)。具有高离子/电子电导率比的 LiBi 亚层允许 Li 仅在 Li 阳极表面沉积并生长到多孔 LiBi 亚层中,从而改善压力(应力)变化。具有富 F 中间层的 NMC811 由于 F 阴离子在高电位 4.3 V 下电化学迁移到 NMC811 中,从而转化为 F 掺杂的 NMC811 阴极,稳定了阴极。阳极和阴极中间层的设计使 NMC811/LiPSCl/Li 电池能够以 2.55 mA cm 的电流密度实现 7.2 mAh cm 的容量,LiNiO/LiPSCl/Li 电池能够以 2.5 MPa 的低堆叠压力实现 310 Wh kg 的电池级能量密度和 11.1 mAh cm 的容量。MgBi 阳极中间层和富 F 阴极中间层为全固态锂金属电池提供了一种通用解决方案,可在低堆叠压力下实现高能量和快速充电能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验