Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA.
Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA.
Nature. 2023 Nov;623(7988):739-744. doi: 10.1038/s41586-023-06653-w. Epub 2023 Oct 25.
The operation of high-energy all-solid-state lithium-metal batteries at low stack pressure is challenging owing to the Li dendrite growth at the Li anodes and the high interfacial resistance at the cathodes. Here we design a MgBi interlayer at the Li/LiPSCl interface to suppress the Li dendrite growth, and a F-rich interlayer on LiNiMnCoO (NMC811) cathodes to reduce the interfacial resistance. During Li plating-stripping cycles, Mg migrates from the MgBi interlayer to the Li anode converting MgBi into a multifunctional LiMgS-LiBi-LiMg structure with the layers functioning as a solid electrolyte interphase, a porous LiBi sublayer and a solid binder (welding porous LiBi onto the Li anode), respectively. The LiBi sublayer with its high ionic/electronic conductivity ratio allows Li to deposit only on the Li anode surface and grow into the porous LiBi sublayer, which ameliorates pressure (stress) changes. The NMC811 with the F-rich interlayer converts into F-doped NMC811 cathodes owing to the electrochemical migration of the F anion into the NMC811 at a high potential of 4.3 V stabilizing the cathodes. The anode and cathode interlayer designs enable the NMC811/LiPSCl/Li cell to achieve a capacity of 7.2 mAh cm at 2.55 mA cm, and the LiNiO/LiPSCl/Li cell to achieve a capacity of 11.1 mAh cm with a cell-level energy density of 310 Wh kg at a low stack pressure of 2.5 MPa. The MgBi anode interlayer and F-rich cathode interlayer provide a general solution for all-solid-state lithium-metal batteries to achieve high energy and fast charging capability at low stack pressure.
在低堆叠压力下操作高能量全固态锂金属电池具有挑战性,因为在 Li 阳极处会发生 Li 枝晶生长,而在阴极处会有高界面电阻。在这里,我们在 Li/LiPSCl 界面设计了 MgBi 中间层来抑制 Li 枝晶生长,并在 LiNiMnCoO (NMC811) 阴极上设计了富 F 中间层来降低界面电阻。在 Li 电镀-剥离循环过程中,Mg 从 MgBi 中间层迁移到 Li 阳极,将 MgBi 转化为具有多层功能的 LiMgS-LiBi-LiMg 结构,这些层分别作为固体电解质界面、多孔 LiBi 亚层和固体粘结剂(将多孔 LiBi 焊接到 Li 阳极上)。具有高离子/电子电导率比的 LiBi 亚层允许 Li 仅在 Li 阳极表面沉积并生长到多孔 LiBi 亚层中,从而改善压力(应力)变化。具有富 F 中间层的 NMC811 由于 F 阴离子在高电位 4.3 V 下电化学迁移到 NMC811 中,从而转化为 F 掺杂的 NMC811 阴极,稳定了阴极。阳极和阴极中间层的设计使 NMC811/LiPSCl/Li 电池能够以 2.55 mA cm 的电流密度实现 7.2 mAh cm 的容量,LiNiO/LiPSCl/Li 电池能够以 2.5 MPa 的低堆叠压力实现 310 Wh kg 的电池级能量密度和 11.1 mAh cm 的容量。MgBi 阳极中间层和富 F 阴极中间层为全固态锂金属电池提供了一种通用解决方案,可在低堆叠压力下实现高能量和快速充电能力。