Suppr超能文献

使用深度学习和图像处理技术评估梨果品质性状

Rating pome fruit quality traits using deep learning and image processing.

作者信息

Nguyen Nhan H, Michaud Joseph, Mogollon Rene, Zhang Huiting, Hargarten Heidi, Leisso Rachel, Torres Carolina A, Honaas Loren, Ficklin Stephen

机构信息

Department of Horticulture Washington State University Pullman WA USA.

Agricultural Research Service, Physiology and Pathology of Tree Fruits Research Unit - Hood River Worksite USDA Hood River OR USA.

出版信息

Plant Direct. 2024 Oct 8;8(10):e70005. doi: 10.1002/pld3.70005. eCollection 2024 Oct.

Abstract

Quality assessment of pome fruits (i.e. apples and pears) is used not only for determining the optimal harvest time but also for the progression of fruit-quality attributes during storage. Therefore, it is typical to repeatedly evaluate fruits during the course of a postharvest experiment. This evaluation often includes careful visual assessments of fruit for apparent defects and physiological symptoms. A general best practice for quality assessment is to rate fruit using the same individual rater or group of individual raters to reduce bias. However, such consistency across labs, facilities, and experiments is often not feasible or attainable. Moreover, while these visual assessments are critical empirical data, they are often coarse-grained and lack consistent objective criteria. Granny, is a tool designed for rating fruit using machine-learning and image-processing to address rater bias and improve resolution. Additionally, Granny supports backward compatibility by providing ratings compatible with long-established standards and references, promoting research program continuity. Current Granny ratings include starch content assessment, rating levels of peel defects, and peel color analyses. Integrative analyses enhanced by Granny's improved resolution and reduced bias, such as linking fruit outcomes to global scale -omics data, environmental changes, and other quantitative fruit quality metrics like soluble solids content and flesh firmness, will further enrich our understanding of fruit quality dynamics. Lastly, Granny is open-source and freely available.

摘要

仁果类水果(即苹果和梨)的质量评估不仅用于确定最佳采收时间,还用于评估果实品质属性在储存期间的变化。因此,在采后实验过程中反复评估果实是很常见的。这种评估通常包括对果实进行仔细的目视检查,以发现明显的缺陷和生理症状。质量评估的一般最佳做法是由同一个评估者或一组评估者对果实进行评分,以减少偏差。然而,在不同实验室、设施和实验中保持这种一致性往往不可行或难以实现。此外,虽然这些目视评估是关键的经验数据,但它们往往不够精细,缺乏一致的客观标准。Granny是一种利用机器学习和图像处理技术对果实进行评分的工具,旨在解决评估者偏差问题并提高分辨率。此外,Granny通过提供与长期确立的标准和参考资料兼容的评分来支持向后兼容性,促进研究项目的连续性。目前Granny的评分包括淀粉含量评估、果皮缺陷评级以及果皮颜色分析。通过Granny提高的分辨率和减少的偏差进行的综合分析,例如将果实结果与全球规模的组学数据、环境变化以及其他定量果实品质指标(如可溶性固形物含量和果肉硬度)联系起来,将进一步丰富我们对果实品质动态的理解。最后,Granny是开源的且免费提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4f2/11461139/c87fddbc068e/PLD3-8-e70005-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验