Costa Ariadne A, Frigori Rafael B
Grupo de Redes Complexas Aplicadas de Jataí (GRAJ), Instituto de Ciências Exatas e Tecnológicas, Universidade Federal de Jataí (UFJ), Jataí, GO, Brazi.
Universidade Tecnológica Federal do Paraná, Toledo, PR, Brazil.
Front Res Metr Anal. 2024 Sep 25;9:1456978. doi: 10.3389/frma.2024.1456978. eCollection 2024.
In this study, we analyze the changes over time in the complexity and structure of words used in article titles and the connections between articles in citation networks, focusing on the topic of artificial intelligence (AI) up to 2020. By measuring unpredictability in word usage and changes in the connections between articles, we gain insights into shifts in research focus and diversity of themes. Our investigation reveals correspondence between fluctuations in word complexity and changes in the structure of citation networks, highlighting links between thematic evolution and network dynamics. This approach not only enhances our understanding of scientific progress but also may help in anticipating emerging fields and fostering innovation, providing a quantitative lens for studying scientific domains beyond AI.
在本研究中,我们分析了截至2020年人工智能(AI)主题下文章标题中使用的词汇的复杂性和结构随时间的变化,以及引用网络中文章之间的联系。通过测量词汇使用的不可预测性和文章之间联系的变化,我们深入了解了研究重点的转移和主题的多样性。我们的调查揭示了词汇复杂性的波动与引用网络结构变化之间的对应关系,突出了主题演变与网络动态之间的联系。这种方法不仅增强了我们对科学进步的理解,还可能有助于预测新兴领域并促进创新,为研究AI以外的科学领域提供了一个定量视角。