Karimi Nafiseh, Amirfattahi Rassoul, Zeidaabadi Nezhad Abolghasem
Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran.
Front Hum Neurosci. 2024 Sep 25;18:1436205. doi: 10.3389/fnhum.2024.1436205. eCollection 2024.
Deep brain stimulation (DBS) has long been the conventional method for targeting deep brain structures, but noninvasive alternatives like transcranial Temporal Interference Stimulation (tTIS) are gaining traction. Research has shown that alternating current influences brain oscillations through neural modulation. Understanding how neurons respond to the stimulus envelope, particularly considering tTIS's high-frequency carrier, is vital for elucidating its mechanism of neuronal engagement. This study aims to explore the focal effects of tTIS across varying amplitudes and modulation depths in different brain regions. An excitatory-inhibitory network using the Izhikevich neuron model was employed to investigate responses to tTIS and compare them with transcranial Alternating Current Stimulation (tACS). We utilized a multi-scale model that integrates brain tissue modeling and network computational modeling to gain insights into the neuromodulatory effects of tTIS on the human brain. By analyzing the parametric space, we delved into phase, amplitude, and frequency entrainment to elucidate how tTIS modulates endogenous alpha oscillations. Our findings highlight a significant difference in current intensity requirements between tTIS and tACS, with tTIS requiring notably higher intensity. We observed distinct network entrainment patterns, primarily due to tTIS's high-frequency component, whereas tACS exhibited harmonic entrainment that tTIS lacked. Spatial resolution analysis of tTIS, conducted via computational modeling and brain field distribution at a 13 Hz stimulation frequency, revealed modulation in deep brain areas, with minimal effects on the surface. Notably, we observed increased power within intrinsic and stimulation bands beneath the electrodes, attributed to the high stimulus signal amplitude. Additionally, Phase Locking Value (PLV) showed slight increments in non-deep areas. Our analysis indicates focal stimulation using tTIS, prompting further investigation into the necessity of high amplitudes to significantly affect deep brain regions, which warrants validation through clinical experiments.
深部脑刺激(DBS)长期以来一直是针对深部脑结构的传统方法,但诸如经颅颞叶干扰刺激(tTIS)等非侵入性替代方法正越来越受到关注。研究表明,交流电通过神经调制影响脑振荡。了解神经元如何响应刺激包络,特别是考虑到tTIS的高频载波,对于阐明其神经元参与机制至关重要。本研究旨在探讨tTIS在不同脑区不同幅度和调制深度下的聚焦效应。使用Izhikevich神经元模型的兴奋-抑制网络来研究对tTIS的反应,并将其与经颅交流电刺激(tACS)进行比较。我们利用了一个多尺度模型,该模型整合了脑组织建模和网络计算建模,以深入了解tTIS对人脑的神经调节作用。通过分析参数空间,我们深入研究了相位、幅度和频率夹带,以阐明tTIS如何调节内源性α振荡。我们的研究结果突出了tTIS和tACS在电流强度要求上的显著差异,tTIS需要明显更高的强度。我们观察到了不同的网络夹带模式,主要是由于tTIS的高频成分,而tACS表现出tTIS所缺乏的谐波夹带。通过在13Hz刺激频率下的计算建模和脑场分布对tTIS进行的空间分辨率分析显示,深部脑区存在调制,而对表面的影响最小。值得注意的是,我们观察到电极下方固有频段和刺激频段内的功率增加,这归因于高刺激信号幅度。此外,锁相值(PLV)在非深部区域略有增加。我们的分析表明使用tTIS进行聚焦刺激,这促使进一步研究高幅度对显著影响深部脑区的必要性,这需要通过临床实验进行验证。