Kreutzberger Mark A B, Yu Le Tracy, Hancu Maria C, Purdy Michael D, Osinski Tomasz, Kasson Peter, Egelman Edward H, Hartgerink Jeffrey D
Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA.
Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
bioRxiv. 2024 Sep 29:2024.09.26.615199. doi: 10.1101/2024.09.26.615199.
Collagens are ubiquitous in biology functioning as the backbone of the extracellular matrix, forming the primary structural components of key immune system complexes, and fulfilling numerous other structural roles in a variety of systems. Despite this, there is limited understanding of how triple helices, the basic collagen structural units, pack into collagenous assemblies. Here we use a peptide self-assembly system to design collagenous assemblies based on the C1q collagen-like region. Using cryo-EM we solve a structure of one assembly to 3.5 Å resolution and build an atomic model. From this, we identify a triple helix conformation with no superhelical twist, starkly in contrast to the canonical right-handed triple helix. This non-twisting region allows for unique hydroxyproline stacking between adjacent triple helices and also results in the formation of an exposed cavity with rings of hydrophobic amino acids packed symmetrically. We find no precedent for such an arrangement of collagen triple helices and have designed mutant assemblies to probe key stabilizing amino acid interactions in the complex. The mutations behave as predicted by our atomic model. Our findings, combined with the extremely limited experimental structural data on triple helix packing in the literature, suggest that collagen and collagen-like assemblies may adopt a far more varied conformational landscape than previously appreciated. We hypothesize that this is particularly likely adjacent to the termini of these helices and at discontinuities to the required Xaa-Yaa-Gly repeating primary sequence; a discontinuity found in the majority of this class of proteins and in many collagen-associated diseases.
胶原蛋白在生物学中无处不在,作为细胞外基质的骨架,构成关键免疫系统复合物的主要结构成分,并在各种系统中发挥许多其他结构作用。尽管如此,对于基本的胶原蛋白结构单元——三螺旋如何组装成胶原质聚集体,人们的了解仍然有限。在这里,我们使用一种肽自组装系统,基于C1q胶原样区域设计胶原质聚集体。利用冷冻电镜,我们将一种聚集体的结构解析到3.5埃分辨率,并构建了一个原子模型。由此,我们确定了一种没有超螺旋扭曲的三螺旋构象,这与典型的右手三螺旋形成鲜明对比。这个无扭曲区域允许相邻三螺旋之间独特的羟脯氨酸堆积,还导致形成一个暴露的腔,腔内有对称排列的疏水氨基酸环。我们没有发现胶原蛋白三螺旋这种排列方式的先例,并设计了突变聚集体来探究复合物中关键的稳定氨基酸相互作用。这些突变的表现与我们的原子模型预测一致。我们的发现,结合文献中关于三螺旋堆积的极其有限的实验结构数据,表明胶原蛋白和胶原样聚集体可能具有比以前认识到的更为多样的构象景观。我们推测,在这些螺旋的末端附近以及所需的Xaa-Yaa-Gly重复一级序列的不连续处,这种情况尤其可能发生;这种不连续在这类蛋白质的大多数以及许多与胶原蛋白相关的疾病中都能发现。