Meng Xiangbin, Xu Gongjun
KLAS, Key Laboratory of Big Data Analysis of Jilin Province, School of Mathematics and Statistics, Northeast Normal University, Changchun, China.
Department of Statistics, University of Michigan, Ann Arbor, Michigan, USA.
Br J Math Stat Psychol. 2025 Feb;78(1):190-224. doi: 10.1111/bmsp.12356. Epub 2024 Oct 10.
Normal ogive (NO) models have contributed substantially to the advancement of item response theory (IRT) and have become popular educational and psychological measurement models. However, estimating NO models remains computationally challenging. The purpose of this paper is to propose an efficient and reliable computational method for fitting NO models. Specifically, we introduce a novel and unified expectation-maximization (EM) algorithm for estimating NO models, including two-parameter, three-parameter, and four-parameter NO models. A key improvement in our EM algorithm lies in augmenting the NO model to be a complete data model within the exponential family, thereby substantially streamlining the implementation of the EM iteration and avoiding the numerical optimization computation in the M-step. Additionally, we propose a two-step expectation procedure for implementing the E-step, which reduces the dimensionality of the integration and effectively enables numerical integration. Moreover, we develop a computing procedure for estimating the standard errors (SEs) of the estimated parameters. Simulation results demonstrate the superior performance of our algorithm in terms of its recovery accuracy, robustness, and computational efficiency. To further validate our methods, we apply them to real data from the Programme for International Student Assessment (PISA). The results affirm the reliability of the parameter estimates obtained using our method.
正态卵形线(NO)模型对项目反应理论(IRT)的发展做出了重大贡献,并已成为流行的教育和心理测量模型。然而,估计NO模型在计算上仍然具有挑战性。本文的目的是提出一种有效且可靠的计算方法来拟合NO模型。具体而言,我们引入了一种新颖且统一的期望最大化(EM)算法来估计NO模型,包括两参数、三参数和四参数NO模型。我们的EM算法的一个关键改进在于将NO模型扩充为指数族内的一个完备数据模型,从而大幅简化了EM迭代的实现,并避免了M步中的数值优化计算。此外,我们提出了一种用于实现E步的两步期望过程,该过程降低了积分的维度并有效地实现了数值积分。而且,我们开发了一种用于估计估计参数的标准误差(SE)的计算过程。模拟结果证明了我们算法在恢复精度、稳健性和计算效率方面的卓越性能。为了进一步验证我们的方法,我们将它们应用于国际学生评估项目(PISA)的真实数据。结果证实了使用我们的方法获得的参数估计的可靠性。