Department of Radiology, Shenzhen Children's Hospital, Futian, Shenzhen, 518038, Guangdong, China.
King Abdullah University of Science and Technology, Thuwal, 6900, Kingdom of Saudi Arabia.
Radiol Med. 2024 Nov;129(11):1667-1681. doi: 10.1007/s11547-024-01893-w. Epub 2024 Oct 10.
Cerebral palsy (CP) is a neurological disorder that dissipates body posture and impairs motor functions. It may lead to an intellectual disability and affect the quality of life. Early intervention is critical and challenging due to the uncooperative body movements of children, potential infant recovery, a lack of a single vision modality, and no specific contrast or slice-range selection and association. Early and timely CP identification and vulnerable brain MRI scan associations facilitate medications, supportive care, physical therapy, rehabilitation, and surgical interventions to alleviate symptoms and improve motor functions. The literature studies are limited in selecting appropriate contrast and utilizing contrastive coupling in CP investigation. After numerous experiments, we introduce deep learning models, namely SSeq-DL and SMS-DL, correspondingly trained on single-sequence and multiple brain MRIs. The introduced models are tailored with specialized attention mechanisms to learn susceptible brain trends associated with CP along the MRI slices, specialized parallel computing, and fusions at distinct network layer positions to significantly identify CP. The study successfully experimented with the appropriateness of single and coupled MRI scans, highlighting sensitive slices along the depth, model robustness, fusion of contrastive details at distinct levels, and capturing vulnerabilities. The findings of the SSeq-DL and SMSeq-DL models report lesion-vulnerable regions and covered slices trending in age range to assist radiologists in early rehabilitation.
脑性瘫痪(CP)是一种神经系统疾病,会破坏身体姿势并损害运动功能。它可能导致智力残疾并影响生活质量。由于儿童的身体运动不协调、潜在的婴儿恢复、缺乏单一的视觉模式以及没有特定的对比或切片范围选择和关联,早期干预具有挑战性且至关重要。早期且及时的 CP 识别和易损性脑 MRI 扫描关联有助于药物治疗、支持性护理、物理治疗、康复和手术干预,以减轻症状和改善运动功能。文献研究在选择适当的对比和利用 CP 研究中的对比耦合方面受到限制。经过多次实验,我们引入了深度学习模型,即 SSeq-DL 和 SMS-DL,分别在单序列和多个脑 MRI 上进行训练。引入的模型采用专门的注意力机制进行定制,以学习与 MRI 切片上的 CP 相关的易损性大脑趋势,专门的并行计算以及在不同网络层位置的融合,以显著识别 CP。该研究成功地实验了单和耦合 MRI 扫描的适当性,突出了沿深度的敏感切片、模型鲁棒性、在不同级别上融合对比细节以及捕获弱点。SSeq-DL 和 SMSeq-DL 模型的发现报告了病变易损区域和覆盖的切片趋势与年龄范围相关,以帮助放射科医生进行早期康复。