Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China.
State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China.
Transl Vis Sci Technol. 2024 Oct 1;13(10):19. doi: 10.1167/tvst.13.10.19.
To identify a reliable biomarker for screening diabetic nephropathy (DN) using artificial intelligence (AI)-assisted ultra-widefield swept-source optical coherence tomography angiography (UWF SS-OCTA).
This study analyzed data from 169 patients (287 eyes) with type 2 diabetes mellitus (T2DM), resulting in 15,211 individual data points. These data points included basic demographic information, clinical data, and retinal and choroidal data obtained through UWF SS-OCTA for each eye. Statistical analysis, 10-fold cross-validation, and the random forest approach were employed for data processing.
The degree of retinal microvascular damage in the diabetic retinopathy (DR) with the DN group was significantly greater than in the DR without DN group, as measured by SS-OCTA parameters. There were strong associations between perfusion density (PD) and DN diagnosis in both the T2DM population (r = -0.562 to -0.481, P < 0.001) and the DR population (r = -0.397 to -0.357, P < 0.001). The random forest model showed an average classification accuracy of 85.8442% for identifying DN patients based on perfusion density in the T2DM population and 82.5739% in the DR population.
Quantitative analysis of microvasculature reveals a correlation between DR and DN. UWF PD may serve as a significant and noninvasive biomarker for evaluating DN in patients through deep learning. AI-assisted SS-OCTA could be a rapid and reliable tool for screening DN.
We aim to study the pathological processes of DR and DN and determine the correspondence between their clinical and pathological manifestations to further clarify the potential of screening DN using AI-assisted UWF PD.
利用人工智能(AI)辅助的超广角扫频源光相干断层扫描血管造影术(UWF SS-OCTA),寻找一种可靠的糖尿病肾病(DN)筛查生物标志物。
本研究分析了 169 例(287 只眼)2 型糖尿病(T2DM)患者的数据,共得到 15211 个个体数据点。这些数据点包括每只眼的基本人口统计学信息、临床数据以及通过 UWF SS-OCTA 获得的视网膜和脉络膜数据。采用统计学分析、10 折交叉验证和随机森林方法进行数据处理。
糖尿病视网膜病变(DR)合并 DN 组的视网膜微血管损伤程度明显大于 DR 无 DN 组,这可通过 SS-OCTA 参数来衡量。在 T2DM 人群(r=-0.562 至-0.481,P<0.001)和 DR 人群(r=-0.397 至-0.357,P<0.001)中,灌注密度(PD)与 DN 诊断之间均存在较强的相关性。基于 T2DM 人群的灌注密度,随机森林模型对 DR 患者的平均分类准确率为 85.8442%,对 DR 患者的平均分类准确率为 82.5739%。
微血管定量分析揭示了 DR 与 DN 之间的相关性。UWF PD 可能成为一种通过深度学习评估糖尿病患者 DN 的重要且无创的生物标志物。AI 辅助 SS-OCTA 可能成为一种快速、可靠的 DN 筛查工具。
原文中的“T2DM”和“DR”分别指“type 2 diabetes mellitus”和“diabetic retinopathy”,这两个缩写在医学文献中经常出现,因此保留了英文缩写。
为了保持文本的流畅性和易于理解,对一些长句和难句进行了适当的拆分和重组。
对于一些专业术语和医学名词,如“artificial intelligence (AI)”“ultra-widefield swept-source optical coherence tomography angiography (UWF SS-OCTA)”“diabetic nephropathy (DN)”等,进行了准确翻译。