Department of Chemistry, Indiana University Bloomington, Bloomington, IN 47401.
The James Tarpo Junior and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN 47907.
Proc Natl Acad Sci U S A. 2024 Oct 15;121(42):e2414768121. doi: 10.1073/pnas.2414768121. Epub 2024 Oct 10.
The cotranslational misfolding of the cystic fibrosis transmembrane conductance regulator chloride channel (CFTR) plays a central role in the molecular basis of CF. The misfolding of the most common CF variant (ΔF508) remodels both the translational regulation and quality control of CFTR. Nevertheless, it is unclear how the misassembly of the nascent polypeptide may directly influence the activity of the translation machinery. In this work, we identify a structural motif within the CFTR transcript that stimulates efficient -1 ribosomal frameshifting and triggers the premature termination of translation. Though this motif does not appear to impact the interactome of wild-type CFTR, silent mutations that disrupt this RNA structure alter the association of nascent ΔF508 CFTR with numerous translation and quality control proteins. Moreover, disrupting this RNA structure enhances the functional gating of the ΔF508 CFTR channel at the plasma membrane and its pharmacological rescue by the CFTR modulators contained in the CF drug Trikafta. The effects of the RNA structure on ΔF508 CFTR appear to be attenuated in the absence of the ER membrane protein complex, which was previously found to modulate ribosome collisions during "preemptive quality control" of a misfolded CFTR homolog. Together, our results reveal that ribosomal frameshifting selectively modulates the assembly, function, and pharmacological rescue of a misfolded CFTR variant. These findings suggest that interactions between the nascent chain, quality control machinery, and ribosome may dynamically modulate ribosomal frameshifting in order to tune the processivity of translation in response to cotranslational misfolding.
囊性纤维化跨膜电导调节因子氯离子通道(CFTR)的共翻译错误折叠在 CF 的分子基础中起着核心作用。最常见的 CF 变体(ΔF508)的错误折叠重塑了 CFTR 的翻译调节和质量控制。然而,新生多肽的组装如何直接影响翻译机制的活性尚不清楚。在这项工作中,我们确定了 CFTR 转录本中的一个结构基序,该基序刺激有效的-1 核糖体移码并触发翻译的过早终止。虽然这个基序似乎不会影响野生型 CFTR 的相互作用组,但破坏这个 RNA 结构的沉默突变会改变新生 ΔF508 CFTR 与许多翻译和质量控制蛋白的结合。此外,破坏这种 RNA 结构会增强 ΔF508 CFTR 通道在质膜上的功能门控及其在 CF 药物 Trikafta 中包含的 CFTR 调节剂的药理学挽救。在不存在 ER 膜蛋白复合物的情况下,RNA 结构对 ΔF508 CFTR 的影响似乎减弱,先前发现该复合物在“抢先质量控制”错误折叠的 CFTR 同源物时调节核糖体碰撞。总之,我们的结果表明,核糖体移码选择性地调节错误折叠的 CFTR 变体的组装、功能和药理学挽救。这些发现表明,新生链、质量控制机制和核糖体之间的相互作用可能会动态调节核糖体移码,以响应共翻译错误折叠来调节翻译的连续性。