Harris-Lee Thom R, Surman Matthew K, Straiton Andrew J, Marken Frank, Johnson Andrew L
Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
School of Chemistry, Monash University, Clayton, Vic, 3800, Australia.
ChemSusChem. 2025 Feb 16;18(4):e202401452. doi: 10.1002/cssc.202401452. Epub 2024 Nov 8.
Green hydrogen production is a key area of importance for advancing into a completely sustainable world, not only for its use in industry and ammonia production, but also for its potential as a new fuel. One promising method for generating green hydrogen is light-driven water splitting using photoelectrodes. Here, a bismuth vanadate (BiVO) photoanode deposition process was developed using new, bespoke dual-source precursors, tailored for use in aerosol-assisted chemical vapour deposition (AACVD). The resulting thin films were highly nanostructured and consisted of phase-pure monoclinic BiVO. Pristine films under 1 sun solar irradiation yielded photocurrent densities of 1.23 mA cm at 1.23 V vs RHE and a peak incident photon-electron conversion efficiency (IPCE) of 82 % at 674 nm, the highest performance of any CVD-grown BiVO film to date. A new, AACVD-compatible WO precursor was subsequently designed and synthesised for the deposition of W-doped BiVO within the same single deposition step.
绿色氢生产是迈向完全可持续发展世界的一个关键重要领域,这不仅是因为其在工业和氨生产中的应用,还因其作为一种新燃料的潜力。一种有前景的绿色氢生成方法是使用光电极进行光驱动水分解。在此,开发了一种钒酸铋(BiVO)光阳极沉积工艺,该工艺使用了专门定制的新型双源前驱体,专为气溶胶辅助化学气相沉积(AACVD)设计。所得薄膜具有高度纳米结构,由纯相单斜晶系的BiVO组成。在1个太阳光照下,原始薄膜在相对于可逆氢电极(RHE)为1.23 V时产生的光电流密度为1.23 mA/cm²,在674 nm处的峰值入射光子 - 电子转换效率(IPCE)为82%,这是迄今为止任何化学气相沉积生长的BiVO薄膜的最高性能。随后设计并合成了一种与AACVD兼容的新型WO前驱体,用于在同一单沉积步骤中沉积W掺杂的BiVO。