Joint Center for Artificial Photosynthesis, 2929 7th Street, Berkeley, CA, USA.
Phys Chem Chem Phys. 2014 Jan 28;16(4):1651-7. doi: 10.1039/c3cp53904k.
BiVO4 thin film photoanodes were grown by vapor transport chemical deposition on FTO/glass substrates. By controlling the flow rate, the temperatures of the Bi and V sources (Bi metal and V2O5 powder, respectively), and the temperature of the deposition zone in a two-zone furnace, single-phase monoclinic BiVO4 thin films can be obtained. The CVD-grown films produce global AM1.5 photocurrent densities up to 1 mA cm(-2) in aqueous conditions in the presence of a sacrificial reagent. Front illuminated photocatalytic performance can be improved by inserting either a SnO2 hole blocking layer and/or a thin, extrinsically Mo doped BiVO4 layer between the FTO and the CVD-grown layer. The incident photon to current efficiency (IPCE), measured under front illumination, for BiVO4 grown directly on FTO/glass is about 10% for wavelengths below 450 nm at a bias of +0.6 V vs. Ag/AgCl. For BiVO4 grown on a 40 nm SnO2/20 nm Mo-doped BiVO4 back contact, the IPCE is increased to over 40% at wavelengths below 420 nm.
BiVO4 薄膜光阳极通过气相传输化学沉积在 FTO/玻璃衬底上生长。通过控制流速、Bi 和 V 源(分别为 Bi 金属和 V2O5 粉末)的温度以及在双区炉中沉积区的温度,可以获得单相单斜 BiVO4 薄膜。在存在牺牲试剂的情况下,CVD 生长的薄膜在水相条件下可产生高达 1 mA cm(-2)的全局 AM1.5 光电流密度。通过在 FTO 和 CVD 生长层之间插入 SnO2 空穴阻挡层和/或薄的、外掺 Mo 的 BiVO4 层,可以提高正面照明的光催化性能。在正面照明下测量的入射光子到电流效率(IPCE),对于直接生长在 FTO/玻璃上的 BiVO4,在 0.6 V vs. Ag/AgCl 的偏压下,波长低于 450nm 时约为 10%。对于生长在 40nm SnO2/20nm Mo 掺杂 BiVO4 背接触上的 BiVO4,在波长低于 420nm 时,IPCE 增加到 40%以上。