Suppr超能文献

将开放量子系统的非微扰模拟技术扩展到激发态质子转移和超快非绝热动力学

Extending Non-Perturbative Simulation Techniques for Open-Quantum Systems to Excited-State Proton Transfer and Ultrafast Non-Adiabatic Dynamics.

作者信息

Le Dé Brieuc, Huppert Simon, Spezia Riccardo, Chin Alex W

机构信息

Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France.

Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, 4 place Jussieu, 75005 Paris, France.

出版信息

J Chem Theory Comput. 2024 Oct 22;20(20):8749-8766. doi: 10.1021/acs.jctc.4c00666. Epub 2024 Oct 10.

Abstract

Excited state proton transfer is an ubiquitous phenomenon in biology and chemistry, spanning from the ultrafast reactions of photobases and acids to light-driven, enzymatic catalysis and photosynthesis. However, the simulation of such dynamics involves multiple challenges, since high-dimensional, out-of-equilibrium vibronic states play a crucial role, while a fully quantum description of the proton's dissipative, real-space dynamics is also required. In this work, we extend the powerful matrix product state approach to open quantum systems (TEDOPA) to study these demanding dynamics, and also more general nonadiabatic processes that can appear in complex photochemistry subject to strong laser driving. As an illustration, we initially consider an open model of a four-level electronic system interacting with hundreds of intramolecular vibrations that drive ultrafast excited state proton transfer, as well as an explicit photonic environment that allows us to directly monitor the resulting dual fluorescence in this system. We then demonstrate how to include a continuous "reaction coordinate" of the proton transfer that allows numerically exact simulations that can be understood, visualized and interpreted in the familiar language of diabatic and adiabatic dynamics on potential surfaces, while also retaining an exact quantum treatment of dissipation and driving effects that could be used to study diverse problems in ultrafast photochemistry.

摘要

激发态质子转移是生物学和化学中普遍存在的现象,涵盖了从光碱和酸的超快反应到光驱动的酶催化和光合作用。然而,模拟这种动力学涉及多个挑战,因为高维、非平衡振动态起着关键作用,同时还需要对质子的耗散实空间动力学进行完全量子描述。在这项工作中,我们将强大的开放量子系统矩阵乘积态方法(TEDOPA)扩展到研究这些具有挑战性的动力学,以及在强激光驱动下复杂光化学中可能出现的更一般的非绝热过程。作为一个例子,我们最初考虑一个与数百个驱动超快激发态质子转移的分子内振动相互作用的四能级电子系统的开放模型,以及一个明确的光子环境,使我们能够直接监测该系统中产生的双荧光。然后,我们展示了如何纳入质子转移的连续“反应坐标”,从而实现数值精确模拟,这些模拟可以用熟悉的势能面上的非绝热和绝热动力学语言来理解、可视化和解释,同时还保留了对耗散和驱动效应的精确量子处理,可用于研究超快光化学中的各种问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验