Gopinath Gokul, Ayyasamy Sakunthala, Shadap Matbiangthew, Shanmugaraj Pavithra, Banu A, Hema M
Division of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore 641 114, Tamil Nadu, India.
Division of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore 641 114, Tamil Nadu, India.
Int J Biol Macromol. 2024 Nov;281(Pt 2):136416. doi: 10.1016/j.ijbiomac.2024.136416. Epub 2024 Oct 9.
The bio-based solid polymer electrolyte serves as a promising choice for the next generation of energy storage devices to meet the requirement of green chemistry. In the current research, a green plasticized magnesium ion-conducting biopolymer electrolyte was developed using simple solution casting method for Electric Double Layer Capacitors (EDLC) applications. The biopolymer Cellulose Acetate (CA) as the host polymer, with varying concentrations of BaTiO as the nanofiller, Mg(CFSO) as the ionic dopant, and PEG as the plasticizer. A 2 wt% addition of BaTiO to the biopolymer electrolyte exhibits maximum conductivity measuring 2.4 × 10 S/cm. Linear Sweep Voltammetry (LSV) analysis demonstrates maximum stability voltage of 3.51 V. The ionic transference number (t) and (t) were determined to be 0.99 and 0.41 respectively. The fabricated EDLC device with the same electrolyte showed polarisation curve without any noticeable peaks in the Cyclic Voltammetry (CV) plot, indicating no redox reactions occurring at the electrode-electrolyte interface. Galvanostatic Charge Discharge (GCD) results showed excellent coulombic efficiency, stability and Energy Density and Power Density performance over 2000 cycles. The incorporation of BaTiO into biopolymer membranes presents a viable approach towards sustainable energy storage solutions by enhancing the energy storage capacity of EDLC devices.
基于生物的固体聚合物电解质作为下一代储能设备的有前途的选择,以满足绿色化学的要求。在当前的研究中,使用简单的溶液浇铸法开发了一种绿色增塑的镁离子导电生物聚合物电解质,用于双电层电容器 (EDLC) 应用。生物聚合物醋酸纤维素 (CA) 作为主体聚合物,添加不同浓度的 BaTiO 作为纳米填料、Mg(CFSO) 作为离子掺杂剂和 PEG 作为增塑剂。在生物聚合物电解质中添加 2wt% 的 BaTiO 表现出最大电导率为 2.4×10 S/cm。线性扫描伏安法 (LSV) 分析表明最大稳定电压为 3.51V。离子迁移数 (t) 和 (t) 分别确定为 0.99 和 0.41。使用相同电解质制造的 EDLC 器件在循环伏安 (CV) 图中没有明显的峰,表明在电极-电解质界面处没有发生氧化还原反应。恒电流充放电 (GCD) 结果表明,在 2000 次循环以上具有出色的库仑效率、稳定性以及能量密度和功率密度性能。将 BaTiO 掺入生物聚合物膜中,通过提高 EDLC 器件的储能能力,为可持续能源存储解决方案提供了一种可行的方法。