iHuman Institute, ShanghaiTech University, Shanghai, China.
School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
Nutr Diabetes. 2024 Oct 10;14(1):86. doi: 10.1038/s41387-024-00343-w.
Quantitative mapping of the brain's metabolism is a critical tool in studying and diagnosing many conditions, from obesity to neurodegenerative diseases. In particular, noninvasive approaches are urgently required. Recently, there have been promising drug development approaches for the treatment of disorders related to glucose metabolism in the brain and, therefore, against obesity-associated diseases. One of the most important drug targets to emerge has been the Glucagon-like peptide-1 (GLP-1) and its receptor (GLP-1R). GLP and GLP-1R play an important role in regulating blood sugar and maintaining energy homeostasis. However, the macroscopic effects on brain metabolism and function due to the presence of GLP-1R are unclear.
To explore the physiological role of GLP-1R in mouse brain glucose metabolism, and its relationship to brain function, we used three methods. We used deuterium magnetic resonance spectroscopy (DMRS) to provide quantitative information about metabolic flux, fluorodeoxyglucose positron emission tomography (FDG-PET) to measure brain glucose metabolism, and resting state-functional MRI (rs-fMRI) to measure brain functional connectivity. We used these methods in both mice with complete GLP-1R knockout (GLP-1R KO) and wild-type C57BL/6N (WT) mice.
The metabolic rate of GLP-1R KO mice was significantly slower than that of WT mice (p = 0.0345, WT mice 0.02335 ± 0.057 mM/min, GLP-1R KO mice 0.01998 ± 0.07 mM/min). Quantification of the mean [F]FDG signal in the whole brain also showed significantly reduced glucose uptake in GLP-1R KO mice versus control mice (p = 0.0314). Observing rs-fMRI, the functional brain connectivity in GLP-1R KO mice was significantly lower than that in the WT group (p = 0.0032 for gFCD, p = 0.0002 for whole-brain correlation, p < 0.0001 for ALFF).
GLP-1R KO mice exhibit impaired brain glucose metabolism to high doses of exogenous glucose, and they also have reduced functional connectivity. This suggests that the GLP-1R KO mouse model may serve as a model for correlated metabolic and functional connectivity loss.
定量绘制大脑代谢图是研究和诊断多种疾病(从肥胖到神经退行性疾病)的关键工具。特别是,迫切需要非侵入性方法。最近,针对与大脑葡萄糖代谢相关的疾病的治疗方法有了一些很有前景的药物开发方法,因此也可以预防肥胖相关的疾病。出现的最重要的药物靶点之一是胰高血糖素样肽-1(GLP-1)及其受体(GLP-1R)。GLP 和 GLP-1R 在调节血糖和维持能量平衡方面发挥着重要作用。然而,由于存在 GLP-1R,大脑代谢和功能的宏观影响尚不清楚。
为了探索 GLP-1R 在小鼠大脑葡萄糖代谢中的生理作用及其与大脑功能的关系,我们使用了三种方法。我们使用氘磁共振光谱(DMRS)提供代谢通量的定量信息,使用氟脱氧葡萄糖正电子发射断层扫描(FDG-PET)测量大脑葡萄糖代谢,使用静息状态功能磁共振成像(rs-fMRI)测量大脑功能连接。我们在完全敲除 GLP-1R 的小鼠(GLP-1R KO)和野生型 C57BL/6N(WT)小鼠中使用了这些方法。
GLP-1R KO 小鼠的代谢率明显慢于 WT 小鼠(p = 0.0345,WT 小鼠 0.02335 ± 0.057 mM/min,GLP-1R KO 小鼠 0.01998 ± 0.07 mM/min)。定量测量全脑的平均 [F]FDG 信号也显示 GLP-1R KO 小鼠的葡萄糖摄取量明显低于对照小鼠(p = 0.0314)。观察 rs-fMRI,GLP-1R KO 小鼠的功能脑连接明显低于 WT 组(gFCD 为 p = 0.0032,全脑相关性为 p = 0.0002,ALFF 为 p < 0.0001)。
GLP-1R KO 小鼠对外源性葡萄糖的高剂量表现出受损的大脑葡萄糖代谢,并且它们的功能连接也减少。这表明 GLP-1R KO 小鼠模型可能成为相关代谢和功能连接丧失的模型。