Suppr超能文献

基于影响的热带气旋相关人口流离失所预测,以支持预警行动。

Impact-based forecasting of tropical cyclone-related human displacement to support anticipatory action.

机构信息

Institute for Environmental Decisions, ETH Zürich, Zurich, Switzerland.

Internal Displacement Monitoring Centre, Geneva, Switzerland.

出版信息

Nat Commun. 2024 Oct 10;15(1):8795. doi: 10.1038/s41467-024-53200-w.

Abstract

Tropical cyclones (TCs) displace millions every year. While TCs pose hardships and threaten lives, their negative impacts can be reduced by anticipatory actions like evacuation and humanitarian aid coordination. In addition to weather forecasts, impact forecast enables more effective response by providing richer information on the numbers and locations of people at risk of displacement. We introduce a fully open-source implementation of a globally consistent and regionally calibrated TC-related displacement forecast at low computational costs, combining meteorological forecast with population exposure and respective vulnerability. We present a case study of TC Yasa which hit Fiji in December 2020. We emphasise the importance of considering the uncertainties associated with hazard, exposure, and vulnerability in a global uncertainty analysis, which reveals a considerable spread of possible outcomes. Additionally, we perform a sensitivity analysis on all recorded TC displacement events from 2017 to 2020 to understand how the forecast outcomes depend on these uncertain inputs. Our findings suggest that for longer forecast lead times, decision-making should focus more on meteorological uncertainty, while greater emphasis should be placed on the vulnerability of the local community shortly before TC landfall. Our open-source codes and implementations are readily transferable to other users, hazards, and impact types.

摘要

热带气旋(TC)每年都会导致数百万人流离失所。尽管 TC 带来了困难并威胁着生命,但通过提前采取疏散和人道主义援助协调等措施,可以减少其负面影响。除了天气预报外,影响预测通过提供有关面临流离失所风险的人数和位置的更丰富信息,使响应更加有效。我们以 2020 年 12 月袭击斐济的 TC Yasa 为例,介绍了一种在低计算成本下实现全球一致且区域校准的与 TC 相关的流离失所预测的完全开源实现,该预测将气象预报与人口暴露和相应的脆弱性相结合。我们强调了在全球不确定性分析中考虑与危害、暴露和脆弱性相关的不确定性的重要性,该分析揭示了可能结果的相当大的分布范围。此外,我们对 2017 年至 2020 年期间记录的所有 TC 流离失所事件进行了敏感性分析,以了解预测结果如何取决于这些不确定的输入。我们的研究结果表明,对于较长的预测提前期,决策应更加关注气象不确定性,而在 TC 登陆前不久,应更加重视当地社区的脆弱性。我们的开源代码和实现可以轻松地转移到其他用户、危害和影响类型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c511/11467304/36a6d6a6feb6/41467_2024_53200_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验