Krishna Bandarupalli, Roy Sounak
Department of Chemistry, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Hyderabad, 500078, India.
Adama India Pvt. Ltd, Genome Valley, Hyderabad, 500078, India.
Sci Rep. 2024 Oct 10;14(1):23686. doi: 10.1038/s41598-024-72980-1.
Rationally designing distinct acidic and basic sites can greatly enhance performance and deepen our understanding of reaction mechanisms. In our current investigation, we studied the utilization of Brønsted acid sites within layered graphitic carbon nitride (g-CN) for the first time to enhance the rate of the Friedländer synthesis. The structural and surface analyses confirm the effective integration of -COOH and -SOH groups into the g-CN lattice. The surface-functionalized g-CN-CO-(CH)-SOH exhibits a remarkable acceleration in quinoline formation, surpassing previously mentioned catalysts, and demonstrating notable recyclability under optimized mild reaction conditions. The heightened reaction rate observed over g-CN-CO-(CH)-SOH is attributed to its elevated surface acidity. By probing the Friedländer reaction mechanism through surface characterization, examination of reaction intermediates, and investigation of substrate scope, we elucidate the pivotal role of Brønsted acid sites. This study constitutes a comprehensive exploration of metal-free heterogeneous catalysts for the Friedländer reaction, offering a unique contribution to the field.
合理设计不同的酸性和碱性位点可以极大地提高性能,并加深我们对反应机理的理解。在我们目前的研究中,我们首次研究了层状石墨相氮化碳(g-CN)中布朗斯特酸位点对提高Friedländer合成反应速率的作用。结构和表面分析证实了-COOH和-SOH基团有效地整合到g-CN晶格中。表面功能化的g-CN-CO-(CH)-SOH在喹啉形成方面表现出显著的加速作用,超过了前面提到的催化剂,并在优化的温和反应条件下显示出显著的可回收性。在g-CN-CO-(CH)-SOH上观察到的反应速率提高归因于其表面酸度的提高。通过表面表征、反应中间体检测和底物范围研究来探究Friedländer反应机理,我们阐明了布朗斯特酸位点的关键作用。这项研究构成了对Friedländer反应无金属多相催化剂的全面探索,为该领域做出了独特贡献。